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Abstract

Artificial Intelligence (AI) has been a game changer on many fronts. For the police it offers new ways of carrying
out investigation, surveillance, crime prevention and order maintenance. Questions have been raised about the trust-
worthiness of some innovative Al-driven applications. Under which circumstances and to what extent should the
police be permitted to use emergent technology, i.e. use ‘dirty’ means in order to reach good ends? In this article, this
problem is illustrated by a discussion of two emergent technologies, and possible criteria and test regimes for estab-
lishing trustworthiness are suggested towards the end of the article.
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1. Introduction

During the past decade, big data, fast processors, ingenious programming, and extensive
networking capabilities have paved the way for major advances within artificial intelligence
(AI). Some people fear the prospects of a ‘brave new world’ unleashed by AI, whereas others
welcome its ability to perform complex and tedious tasks, mitigate socially induced bias, and
produce useful knowledge through big data analyses.

In the context of policing, some Al-driven systems have been hotly debated, particularly
within surveillance and crime prediction (Kaufmann, 2018; Richardson et al., 2019; Zuboff,
2019, pp. 387-388). In addition, there are emergent systems and techniques that generate
high hopes and great fears long before they have gained operational status. Approval pro-
cesses take time, as it is often difficult to establish reliability, legitimacy and trustworthiness
in the context of Al. Recently, several guidelines have been proposed to assure the produc-
tion of trustworthy Al systems (HLEG-AI, 2019; NENT, 2019; New Zealand Government,
2020), but, increasingly, advanced tech innovation takes place in the less regulated private
sector (Gerstein, 2019, p. 56). Neither governments nor the police dictate technological
innovation within the Industry 4.0 paradigm (Rainnie & Dean, 2020). As governmental
approval processes tend to be slow, emerging technologies may be applied for recreational
or criminal purposes before they are even considered for law-enforcement.

Copyright © 2021 Author(s). This is an open access article distributed under the terms of the Creative Commons CC-BY-NC 4.0
License (https://creativecommons.org/licenses/by-nc/4.0/).
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As cities and societies become ‘smarter’, cybercrime increasingly! poses a threat to crucial
public services — as well as to businesses and individuals. Crime prevention and criminal
investigations are likely to fail if the police lack understanding of, and the capabilities to
counter, novel forms of cybercrime. More intensive old-school policing cannot bridge this
gap. Smart city policing demands new technological measures and methods.

As professionals, the police are supposed to use approved equipment in accordance with
legal and moral standards — even if novel technologies that could potentially help to solve or
prevent crime exist. Still, exceptions to the rules are imaginable. If responsible police officers
are pursuing a noble cause, and the standard operating procedures prove inadequate, why
not try alternative methods? This is what Hartmann (2018, p. 162) refers to as ‘grey zone
creativity. After all, as is the case in most professions, there is a gap between ideal per-
formance and how policing is actually done (Hartmann, 2018, p. 161). The temptation to
venture into the grey zone may become even stronger if innovative applications are both
accessible and affordable to individuals on both sides of the law. This sets the scene for a new
heroic villain — the Digital Dirty Harry, asking the same question as the original Dirty Harry:
are dirty means appropriate for reaching good ends (Klockars, 2005, p. 582)?2

In this article, I revisit the Dirty Harry problem in some high-tech scenarios. The aim is
to analyse and clarify technological and moral issues within the grey zone. Are there circum-
stances in which the police can be permitted to short-cut the slower processes of techno-
logical implementation assessment and approval?? Before reaching the Digital Dirty Harry
problem proper, the concept of artificial intelligence is explored, as well as the concepts of
accountability, reliability, and trustworthiness.

2. Artificial intelligence

Artificial intelligence has been a hot topic since the advent of electronic computers, but its
development has hit several standstills, or ‘winters’ (Broussard, 2018, kindle loc 1747). With
today’s dramatically improved processor speeds, storage capacity, and connectivity (Marcus
& Davis, 2019, p. 10), Al applications benefit every smart phone user, for instance through
optical character recognition, computer vision, and language translation. In some areas, Al
has also surpassed the performance of human specialists, for instance in interpreting radio-
graphic images (Coccia, 2020). However, Al sometimes leads one astray (Nguyen et al.,
2015), or it ‘hallucinates’ (Marcus & Davis, 2019). Algorithms fatally overrode pilot input in
the Boeing 737 Max (Mongan & Kohli, 2020). The Twitter robot Tay quickly turned racist
(Hannon, 2018). Self-driving cars have been crashing (Marcus & Davis, 2019, p. 19), and US
congress representatives have been identified as criminals (Levin, 2018), to mention just a
few examples. Morally troublesome military Al applications exist, too, like large and small-
scale kill drones where human operators, from a distance, simply consent to or reject robotic
tactical solutions (Allinson, 2015). People presumably in the know, like Stephen Hawking

1. See for instance https://www.interpol.int/en/News-and-Events/News/2020/INTERPOL-report-shows-alarming-
rate-of-cyberattacks-during-COVID-19.

2. In the 1971 movie, Inspector ‘Dirty’ Harry Callahan tortured kidnapper Scorpio as a last-ditch effort to save
a young girl. In the modern setting, we must imagine Harry’s descendants pursuing morally good ends with
morally dirty, digital means, or, bluntly refusing to acknowledge the moral aspect of technology, subscribing to
what Drengson (1982) labelled technological anarchism.

3. The sting of the question may be softened by current reinterpretation of ‘privacy’, ‘freedom’ and ‘control’ (Hoof-
nagle et al., 2019).
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and Elon Musk (Schneier, 2018, p. 86) have expressed concerns over artificial intelligence
and the prospect of Al getting out of hand — reaching ‘singularity’ and turning itself against
humanity. What is AI?

The concept ‘artificial intelligence’ is fuzzy, as it refers to different simulated cogni-
tive abilities, to strategies, and to systems. It has been said to mimic natural intelligence
(Campolo & Crawford, 2019, p. 3), it has been characterised as ‘super intelligent’ (Bostrom,
2014), and as a different type of intelligence, a kind of ‘idiot savant’ (Marcus & Davis, 2019, p.
64). A High-Level Expert Group on Artificial Intelligence appointed by the European Com-
mission states that Al ‘refers to systems that display intelligent behaviour by analysing their
environment and taking actions — with some degree of autonomy — to achieve specific goals’
(HLEG-AI, 2019, p. 1). Put differently, Al systems register some state of affairs and do some-
thing on this basis. In its simplest form, Al operates like a thermostat that senses tempera-
ture change and compensates by switching on or off a heater. The Expert Group, however,
has more advanced devices in mind:

Al-based systems can be purely software-based, acting in the virtual world (e.g. voice assis-
tants, image analysis software, search engines, speech and face recognition systems) or Al can
be embedded in hardware devices (e.g. advanced robots, autonomous cars, drones or Internet
of Things applications) (HLEG-AI, 2019, p.1).

The AI systems mentioned here are ‘narrow’ in the sense that they perform specific tasks
in more or less known environments (Marcus & Davis, 2019, p. 13), typically providing
assistance for planning and reasoning purposes, or for performing searches and knowledge
representation (Marcus & Davis, 2019, p. 45).4 Simple Al systems often contain hand-coded
algorithms. In principle, an automatic traffic control system performs scripts like: ‘IF mea-
sured speed <80-90 km/h> THEN BEGIN RecogniseNumberPlate; RetrieveOwnerName from
DMV-database; SendFinel000ToOwner; END’. More advanced systems have machine learn-
ing capability, that is, they make ‘educated guesses based on data’ (Broussard, 2018, kindle
loc 1791), improving system performance with experience.

There are three types of machine learning (Russell & Norvig, 2016). First, the learning
may be supervised by a human teacher, who decides whether the computer system identifies
the ‘example inputs’ correctly or not: ‘Yes, this is a photo of a dog!” or ‘No, this is not a dog!
(but a cat). The supervisor teaches the machine a general rule that maps inputs (here: a dog
image) to the correct output (the label ‘dog’). In unsupervised machine learning no labels
(e.g. ‘dog’) are provided for the learning algorithm. The algorithm simply judges whether
an image resembles another image through identifying common features or ‘edges’ in the
input photos. Unsupervised learning may thus reveal patterns unimagined by the supervi-
sor. Large training databases are usually needed in order to identify the relevant features
reliably.

Reinforcement machine learning is favoured when computers interact with dynamic envi-
ronments or operate in environments containing sparse feedback. Such Al systems may
navigate their ‘problem space’ towards their goal without clearly defined ‘domain selectors),
i.e. what inputs to expect and which feedback to receive.

4. General AT (GAI) implies understanding, flexibility, and common sense and is beyond the scope of this article.
GAI would require ‘an immense amount of foundational progress—not just more of the same sort of thing that’s
been accomplished in the last few years, but [...] something entirely different’ (Marcus & Davis, 2019, p. 4).
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If the task is to learn chess, the problem space is well-defined and predictable. The dif-
ferent ‘states’ of the game can be fully described at any moment, and the number of legal
actions that will either improve or worsen the state are limited. If the task is to drive a car in
heavy traffic and bad weather, the problem space is dynamic and less well-defined. In both
cases, reinforcement learning takes place as learning-by-doing, gaining experience by erring
or breaking things (preferably in simulations). More formally, reinforcement learning con-
sists in exploring a vast number of sequences of state/action pairs, linking these to probable
rewards, until a best course of action is found. Since this procedure can be repeated con-
tinuously at blistering speeds without fatigue, Al systems can surpass human intelligence in
some contexts. Alpha zero can beat human grand masters at chess most of the time, while
self-driving cars generally drive more safely, although they can still make amateurish mis-
takes. Massive artificial experience can trump human understanding.

Deep learning Al utilises ‘neural’ networks consisting of ‘layers’ representing the different
features located between the input and the output of the system. The layers are intercon-
nected through nodes or so-called neurons (Marcus & Davis, 2019, pp. 48—49), hence the
name. The connections between the nodes are referred to as weights, i.e. numbers describ-
ing the degree of correlation between the nodes. The depth of deep learning is judged by its
number of layers. Deep learning neural networks are particularly useful in reinforcement
learning when both the possible states and proper actions are hard to define in advance.

Through extensive training on samples from the state/action space, neural networks learn
to map states to values. The network not only considers immediate gains, but also rewards
to be had later in the simulation sequence. The neural network thus approximates a value
function, resembling crude utilitarian calculus. Through fine-tuning correlations between
multitudes of features over time, the system arrives at the optimal response to various
inputs. This is how it learns to navigate seemingly chaotic environments.

Deep learning can replace work-intensive human computer programming and outper-
form older machine-learning techniques in complex tasks such as speech recognition or
earthquake aftershocks prediction (Marcus & Davis, 2019, p. 53). However, given its con-
stant back and forth (i.e. learning), its corrections of millions of biases and weights in order
to find the optimal paths (‘local minima’), it becomes humanly impossible to account for all
the details of how such systems arrive at their solutions. Their domain selectors might not
even make much sense from a human point of view. Still, deep learning is basically a matter
of identifying features (edges and simple figures) and establishing connections between
them. These are the building bricks of the magic of facial recognition, gait recognition, self-
driving cars or advanced predictive policing. But how can we perform responsible technol-
ogy implementation assessments when it comes to deep learning systems? Is deep under-
standing of deep learning processes required in order to trust such innovative technology?

3. Accountability and trustworthiness
When Al systems work as advertised, it seems irrational to return to old ways, e.g. radioing
DMV registers instead of performing automatic number-plate recognition (ANPR). Like-
wise, toiling through numerous manual SQL queries seems absurd if Palantir can perform
the same task instantaneously. Some Al systems simply enhance workplace efficiency.
Other systems make bold promises about brand new possibilities. The latter are sometimes
referred to as ‘emergent’ technologies.

According to Rotolo, Hicks, and Martin (2015), emergent technology can be identified
by five key attributes: (i) its radical novelty, (ii) a relatively fast growth, (iii) coherence, (iv)



NORDIC JOURNAL OF STUDIES IN POLICING | VOLUME 8 | No. 2-2021 5

prominent impact, and (v) uncertainty and ambiguity. Several new deep learning applica-
tions qualify as emergent technology, both because it is difficult to account for their inner
workings, and because their capabilities are not fully explored.> Granted, the (technical)
internal reliability of the Al may develop swiftly through training but establishing simulation
reliability is not enough to make a product operationally trustworthy. NASA’s technology
readiness level (TRL) classification system is often referred to in this context. It assesses the
level of maturity, running from stage 1: ‘technology research’ to stage 10: ‘proven operation’
(Straub, 2015). For academic researchers or private sector innovators the critical phase for
tech innovation occurs in the stage 4—6 range, comprising the steps (4) “Technology dem-
onstration), via (5) ‘Conceptual design and prototype demonstration’ to (6) ‘Preliminary
design and prototype validation’ As this is where most developing projects come to a halt,
this area is sometimes referred to as the ‘Valley of Death’. Before reaching stage 7 the technol-
ogy is typically dependent on external entrepreneur seed funding or so-called ‘angel inves-
tors’ (Murphy & Edwards, 2003). In the absence of operational testing, some form of hype
might be required to push the product through the Valley of Death, towards the stage where
it is seriously considered for further testing and implementation.

Implementation assessment matrixes typically take reliability, utility, and cost/benefit into
account. Today, social and ethical concerns are included in such assessments (Wienroth,
2020b), but, in what manner? As mentioned, the European Commission issued its Ethics
Guidelines for Trustworthy Alin 2019, focusing particularly on professional/public interaction
systems (European Commission, 2019). Guidelines are urgent, it is maintained, because Al
technology is likely to become crucial to solving future challenges (European Commission,
2019, p. 33). These include useful services that Al makes possible (European Commission,
2019, p. 9), but unfortunately, also threats like digital ID theft, covert tracking of individuals,
citizen scoring, lethal autonomous weapon systems, and ‘potential longer-term concerns’
(European Commission, 2019, pp. 33-35).

The guidelines emphasise that only Al that is lawful, ethical, as well as technically and
socially robust, can be characterised as ‘trustworthy’” (European Commission, 2019, pp. 2,
5), and the salient moral concerns that underpin trustworthiness are human rights, privacy,
transparency, fairness, bias, and accountability (European Commission, 2019, p. 2). So, we
must assume that machine-learning technologies need testing regimes that can assess the
presence or absence of these values® through studying the biases of learning databases, algo-
rithmic bias, knowledge presentation, etc. Establishing trustworthiness in this comprehen-
sive sense clearly involves more than believing the hype and initial anecdotal impressions of
products below TRL 7. Indeed, studying moral and social issues (and their potential impact)
is a time-consuming and costly process and may be a factor that contributes to confining a
product to the Valley of Death.

Today, internet crowd funding and social media hype can push products through the
Valley. Mass distribution of half-finished products, perhaps for a small fee, can help estab-
lish technologies as emerging, possibly disruptive. ‘Recreational” products may also be con-
sidered useful in the context of policing, perhaps as open-source intelligence (OSCINT)
measures, or as investigative tools. Such ‘function creep’ (Dahl & Satnan, 2009) took place

5. Technologies that actually have a game-changing impact are often referred to as ‘disruptive’ (Danneels, 2004).

6. These are standard tenets within science ethics, i.e. the promotion of respect for human dignity, privacy, duty
to inform, consent/inform, confidentiality, avoiding harm, impartiality (avoid bias/fairness), and accountability
(NESH, 2016).
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in police utilisation of GEDmatch (Kennett, 2019), triggering questions of reliability and
ethics. As is the case in many matters concerning police work, there will be competing views,
values and interests (Wienroth, 2020b, p. 539). This clash of interest is probably exacerbated
in the context of emergent technology.

4. Two emergent police applications

At first, the police used Al for knowledge management purposes (Alzou’bi et al., 2014;
Vestby & Vestby, 2019). Today, Al is crucial to many police forces in performing order main-
tenance, criminal investigations and crime prevention through systems like PredPol, Valcri
or Palantir.” Well-established systems might of course involve ethical and social challenges
too, but emergent deep learning technology is more likely to produce ‘unknown unknowns’
(Taleb, 2010) — particularly when the documentation for both the learning databases and
the valuing systems (algorithms) is sparse. In the following, an emerging facial recognition
application and 3D DNA phenotyping are studied in some detail.

4.1 Facial recognition: Clearview Al

Well before Bertillon’s standardisation of mug shots in 1888, facial recognition was used
to establish the identity of offenders. In The Pickwick Papers, Charles Dickens (1836, 2009)
described how the police/wardens memorised the faces of offenders in prisons as the
inmates were ‘sitting for their portrait’ and ‘having their likeness taken’ Later, mugshots
were catalogued according to different facial features, age, geographical origin, etc., before
digital photos and computers revolutionised the speed and flexibility of retrieval. With the
increased accessibility of automatic facial recognition from 2006 onwards,® automatic recog-
nition of persons of interest in real-time became possible, and such systems are now found
at any border checkpoint or sensitive area.

Even though face recognition is commonplace, and the police have access to digital,
searchable databases, the success rate is far from 100 percent. A blurry tele-lens photo of
a person may fail to match with a high-contrast mugshot (or ‘face print’) taken years ago.
The algorithm comparing the two might be too weak, or the person of interest might not
even exist in the police database.” The former problem presents a technical challenge; the
latter problem could in part be mitigated by having unlimited access to social media images.
Google’s or Yandex’s image search can prove helpful, but a recent app from Clearview Al
purportedly performs both tasks far better. By uploading a photo from a surveillance camera
or a smart phone, the Clearview app compares the snapshot to a database of three billion
photos, ‘scraped from Facebook, YouTube, Venmo and millions of other websites’ (Hill,
2020b), exceeding governmental databases or those of the Silicon Valley giants by many
factors. Clearview AI’s code is also said to support augmented-reality glasses, thus enabling
wearers to identify anyone within view, immediately revealing their names, addresses, occu-
pations, as well as their online networks (Hill, 2020b). According to The Guardian, officers
in more than 2200 law enforcement agencies have been ‘live testing’ this app by February
2020 (Taylor, 2020), and according to the provider it has also been licenced to ‘a handful of

7. See Revell (2017). Al in policing is defined loosely as the ‘growing use of technologies that apply algorithms to
large sets of data to either assist human police work or replace it’ (Joh, 2017, p. 1139).

8. Cf. the Face Recognition Grand Challenge competition (Phillips et al., 2005).

9. For live face-recognition NeoFace is used by several police forces (Klontz & Jain, 2013).
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companies for security purposes’ (Hill, 2020b). It was also made available for some investors
at an early stage (Hill, 2020a).

The algorithms of the Clearview Al application are opaque to the customers, as is the
exact scope of its database. But the app seems to provide otherwise unavailable information
instantly, and has, allegedly, helped solve several difficult cases. It qualifies as emergent tech-
nology according to the criteria cited above: It is novel, it is growing in use, and it has had
some impact. Uncertainty and ambiguity are definitely still present. It is also ‘coherent’ in
the sense that it has moved beyond the conceptual stage and found a commercially viable
form within the security market.

The Clearview Al system may qualify as ‘emergent’, but it is not alien to us. It performs
trivial tasks, only in a superior way. Google has refrained from developing similar far-reach-
ing apps — allegedly for moral reasons, and Facebook and Twitter have responded by denying
Clearview’s use of ‘their’ photos (Hill, 2020c). But, as the technology and its ‘dirty’ data-
bases already exist, the system may well resurface, even if ‘Clearview Al is ushered back to
the Valley of Death. One might think that its surveillance capability would diminish public
willingness to document lives online, but Clearview’s success would have been impossible in
the first place without an altered public valuing of privacy (Hoofnagle et al., 2019; Zuboff,
2019). After all, people willingly post photos and coordinates on social media, and even their
own DNA to online services like GEDmatch and AncestryDNA. In smart, online societies,
privacy seems to have been offset by other concerns, particularly if understood as ‘the extent
to which [personal] information [...] is communicated to others’” (Bellaby, 2012, p. 102).

A Dirty Harry of the digital age may therefore argue that Clearview Al is socially accept-
able, at least for purposes of policing — but is it trustworthy? Technically, a Clearview Al
search seems similar to performing an ANPR (automatic number plate recognition) query.
The app simply maps certain features in an input photo and searches for a set of similar
features (‘“faceprints’) in a database. If ANPR is considered trustworthy, Clearview must, by
analogy, be trustworthy, too. However, the vehicle registration database, which ANPR relies
on, consists of a set of records identified by unique letters and numbers, whereas Clearview’s
data set cannot be validated (labelled) in the same manner. Faces change, and a match is
always a matter of degree of similarity between two faceprints. Superior matches may in
principle always exist outside of Clearview’s database. Worse, its database content is not even
initially subject to any quality control. Millions of fake social media profiles exist.1? The fact
that the database is collected without permission raises moral issues as well; as does the fact
that the learning strategies/algorithms of Clearview are the secret of a private company. The
ANPR analogy is therefore not as striking as it may seem at first glance, even when only the
technical issues are considered.

Still the Clearview Al application may be of value to the police. As time goes by, the ‘opera-
tor’ may become familiar with the limitations of the app, e.g. the types of errors that are likely
to occur. The police officer can also visually compare the input photos and the matches. If
the matches seem reasonable most of the time, the trustworthiness of the app increases. If
it yields better results than the alternative systems, one might at least argue that the app is
useful — despite its inherent legal and moral issues. Some police officers and departments
are clearly willing to trust the application without proper testing or understanding of the
system:

10. FaceBook acknowledges that there are at least 100 million fake FaceBook accounts (Rosen, 2018).
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Federal and state law enforcement officers said that while they had only limited knowledge of
how Clearview works and who is behind it, they had used its app to help solve shoplifting, iden-
tity theft, credit card fraud, murder and child sexual exploitation cases (Hill, 2020b).

A wish to trust a tool based on anecdotal results is hardly a sufficient criterion for trust-
worthiness in the abovementioned sense. Rather, I would like to claim, it encourages Digital
Dirty Harryism, i.e. a conscious utilisation of a dirty means in order to achieve some good.
For instance, the system biases are still unknown. Although algorithms lack human implicit
and explicit biases, machine learning processes may introduce biases stemming from his-
torically biased training databases, or even inherent algorithmicbias (Kitchin, 2017) through
the manner the algorithm assigns the numerous weights. Whether such biases represent a
problem in the case of Clearview Al is impossible to determine without rigorous testing. The
system seems to work well under some circumstances, but without thorough experimenta-
tion it is impossible to establish whether the Al in question is trustworthy (Marcus & Davis,
2019, pp. 57-58). Offering this system to law enforcement agencies at the present stage seems
like a desperate attempt to save the project from the Valley of Death.

As a last-ditch attempt to solve a cold case, or in an otherwise exceptionally important
case, Clearview Al certainly poses a temptation. The quick fix perspective is exactly what
invites Digital Dirty Harryism. There are, however, good reasons for restraint in this case,
perhaps insisting on the importance of privacy, even if its flavour has changed. After all,
Clearview Al is developed and owned by a private company willing to steal data, and unwill-
ing to share its business secrets.!! Data security is also clearly an issue. In using the app, the
police are required to upload sensitive photos to Clearview’s servers. The company’s ability
and commitment to protecting data has not been vetted by independent agencies. Some
early users have even claimed that the company monitors their input and tampers with data
(Hill, 2020b). Such socio-ethical issues weaken the application’s trustworthiness, and add to
its ‘dirtiness’, not through the operator’s bad intention, but through covert interests of own-
ership.

4.2 DNA phenotyping
Fingerprinting was the most prominent biometrics identification method until DNA analy-
sis became available in the 1980s. On the basis of 13 (or sometimes 20) highly variable
markers, individuals can be identified with near 100% certainty (Matheson, 2016). DNA
samples may thus link a person to a crime scene if the DNA markers match with an entry in
a (police) DNA database.

The DNA markers used by the police have until recently been genotypes, i.e. not connected
to specific visible traits of the person. Other parts of the DNA contain phenotypeinformation
(visible features). Walsh and Keyser reliably managed to predict eye-, hair- and skin colour
from other DNA markers — insisting, however, that that their method is not intended for
identification of individuals. Still, examining these traits may provide a starting point in cold
cases (Matheson, 2016). If the DNA from a suspected offender is determined to belong to a
blue-eyed, brown-haired, fair-skinned person, this narrows down the scope for later geno-
type screening considerably. Interestingly, Mark Shriver and Peter Claes claim to be able to
predict face shapes by DNA, based on 200 genes associated with facial development (Mathe-

11. The threat of ‘vendor lock-in” must be considered seriously. Even with the widely used Palantir system, data has
been lost when police departments have terminated their subscription to the service (Harris, 2017).



NORDIC JOURNAL OF STUDIES IN POLICING | VOLUME 8 | No. 2-2021 9

son, 2016). If facial features can be reliably modelled from DNA alone, it would present a
major breakthrough: A 3D model of the face of a person can then be shaped from a crime
scene DNA sample (Tremblay, 2014). Granted, aging and non-biological factors may influ-
ence the looks of a face, but the 3D-model may give a telling impression of the face, perhaps
at different degrees of maturity.

This technology, based on medical science, is ‘emergent’ in the sense that it has a novel
character, a potential for fast growth and impact, and involves uncertainty and ambiguity.
3D phenotyping can, of course, not produce faceprints to be fed into facial recognition
systems, but the police can at least get a rough facial composite of an offender based on DNA,
even if no observations exist. What was recently a sci-fi dream is now a possibility (Janos,
2018). In the case of the Golden State Killer, tracked down by forensic genealogy, the police
also had a DNA-based 2D image resembling the perpetrator (Wickenheiser, 2019). Forensic
DNA-based phenotyping conducted by Parabon NanoLabs has been useful in solving several
cases and has been portrayed as a ‘fully operational’ method, although this assessment is
contested (Wienroth, 2020a).

3D phenotyping clearly differs from face recognition. Whereas the latter compares a sample
with a database, the former creates a visual model based on invisible DNA information. Of
course, phenotyping depends on system learning by comparing a database of facial forms
with DNA samples but rendering a 3D face model still requires extrapolation. Uncertainties
involved in making correlations between the DNA and visible features are readily acknowl-
edged (Marano et al., 2019), and non-DNA factors interfere, too (Janos, 2018). As the com-
plexity of the task invites deep machine learning, further challenges to the accountability are
introduced, since the deep learning weighing mechanisms are hard to account for.!2 Unless
the training database is huge, reliability is bound to be quite low, and tracing system-inher-
ent biases becomes difficult as well. In addition, there is no common-sense quality control
for 3D modelling by phenotyping — unless the person is known in advance.!3 Bias is likely to
occur in the training of the system, and fear of racial profiling has been an issue (Sero et al.,
2019.). Groups of people have simply refused to participate in phenotyping trials,!4 thereby
reducing its trustworthiness. One may also well imagine different forms of function creep in
using DNA for such purposes.!> For all these reasons, trustworthiness is hard to establish.
Presently, neither the Clearview Al app nor 3D phenotyping seem to meet the European
Commission’s criteria of trustworthiness. But one may ask, what if 3D phenotyping or the
Clearview app could help the police solve cold cases, or identify child molesters? Why focus
solely on trustworthiness? After all, every single day we rely on the forces of nature, other
advanced systems, and persons we hardly know or understand. If everything else fails, why

12. As Marcus and Davis (2019, p. 57) claim ‘there is an unsolved mystery about why neural networks work as well
as they do, and a lack of clarity about the exact circumstances in which they don’t.

13. Identikit face reconstruction may seem analogous, but identification by facial composites is still based on direct
observation. Offender profiling, i.e. creating an offender ‘bio” from traces of actions on the crime scene, seems
methodically closer to 3D phenotyping.

14. On the other hand, we might be even more vulnerable to bias if we remain content with natural intelligence. See
also Brantingham, Valasik, and Mohler (2018).

15. Futile attempts to identify criminal features have been performed by phrenologists like Franz Joseph Gall, as well
as in a more recent project (Dellinger, 2020).



10 JENS ERIK PAULSEN

should the police refrain from trying emergent technology, especially if criminals or terror-
ists are utilising the same measures? Sometimes legalities are set aside:

[In Germany] they saw the deployment of forensic DNA phenotyping as legitimate even though
it was not considered legal at the time, calling for a revision of the law to permit routine use in
policing by ascribing significant value to them as law and order tools (Wienroth, 2020b, p. 593).

From a pragmatist point of view, this seems acceptable, and police officers are not necessarily
interested in knowing how high-tech systems work, but rather that they work (Kaufmann,
2018, p. 157). Can discrete acts of Digital Dirty Harryism be considered acceptable? The EC
ethical guidelines offer little guidance in the grey zone.

5. Digital responsibility, digital dirtiness

The discussion of acceptability and trustworthiness should not be confined purely to tech-
nological issues. The mode of interaction is also an important factor — as system reliability
may well be enhanced by human involvement. If judgments and decisions are solely a human
responsibility, systems are often referred to as ‘human in the loop’ (HITL) systems. Such Al
systems (e.g. guided missile systems or some language translation tools) typically generate
options on the operator’s request, which the operator accepts or rejects. HITL-systems do
not ‘act’ unless human consent is given. In other contexts, human involvement is not nec-
essary or even desirable, e.g. in well-defined, but tedious and work-intensive tasks that may
cause humans to err, or in tasks that require super-human abilities (e.g. split-second rocket
launch abort systems). Such systems are referred to as human-out-of-the-loop systems or
HOTL for short (Eliot, 2019). HOTL systems are supposed to be ‘responsible’ by design, in
so far as ‘responsibility’ is a meaningful attribution to digital systems (Coeckelbergh, 2019).
However, as we have seen, Al responsibility is clearly problematic in the discussion of emer-
gent systems.

Clearview Al and 3D phenotyping do not fit the HOTL or HITL descriptions well. Rather,
these tools or methods enhance or extend the operators’ cognitive or physical capabil-
ity,16 without necessarily limiting their discretionary power. These systems may be thought
of as Human-governing-the-loop (HGTL) applications. Operators are not supposed to
blindly accept their suggestions, although part of the deliberation process is sourced out to
an opaque artificial intelligence component. However, with augmented powers, increased
responsibility ought to follow. Responsible governing of emergent system loops requires a
critical attitude, where the operator also actively fests the system. Adequate understanding of
different modes of interaction between technology and humans (HITL, HGTL and HOTL) is
also needed, as these may vary. For instance, in the context of self-driving cars, the autonomy
distinction is made in terms of levels 1 to 5 (Litman, 2020, p. 8). Level 5 indicates a HOTL
conception, where no driver is needed. Level 4 resembles HITL (where a human driver con-
tinuously oversees the Al choices), whereas level 2 is similar to the HGTL model, where the
driver is driving the car, but using ‘adaptive cruise control’ or ‘lane holder’ in order to ease
the workload. At times the driver might find him- or herself on a slippery slope, going from
governing the loop to just being a human in the loop, accepting every suggestion the appli-
cation/car presents. As the trust in the system increases, it may take a conscious effort to

16. For more on extension theory, see Brey (2017).
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remain attentive, to avoid leaving the ‘loop’ to itself. Part of assessing the emergent system
is to decide the level of human involvement that yields trustworthiness.

Another argument for maintaining a critical attitude relates to the preliminary user inter-
face of emergent technology. It matters whether a match is presented like a jackpot’ (sound
and blinking lights), or ‘83 % similarity’ displayed in Helvetica typeface. If a thermometer
turning red predicts excessive vulnerability in child welfare contexts (Eubanks, 2018, p. 141),
a busy social worker/operator is emotionally nudged into taking action. Campolo & Craw-
ford (2019, p. 10) claims that the ‘epistemological flattening’ of complex social contexts into
clean ‘signals’ for the purposes of prediction, has a bearing on the social applications of
machine learning. Suggestive presentation of probable correlations is easily taken for artifi-
cial decision-making.

In our context, facial models based on phenotyping hardly facilitate reasoning about
probabilities or critical thinking, as the expression of face models appeals intuitively.
A resemblance between a 3D face model and some person known to the police (but hitherto
unrelated to the case) is hard to suppress. But particularly in an experimental HGTL setting,
Al should merely provide decision support, not clear-cut consent options. Marcus and Davis
(2019, p. 192) suggest that we should ask ourselves: can we reach the same conclusions based
on the same facts [as the system] in another manner? If this is impossible, being a morally
responsible governor of the loop is hard. In our setting, Marcus and Davies’ common sense
criterion seems like a necessary, but hardly a sufficient condition. System trustworthiness
depends also on the operator’s critical assessment of the validity of the output as well as
the degree of operator involvement. Adequate understanding of the output presentation is
crucial. Responsible loop-governing implies both an understanding for when to use systems
and how to interpret system output.

Emergent technology may also intensify the layers of responsibilities problem. As the
system in question is a novelty, resulting errors and failures are not necessarily the fault of
the operator. System designers, programmers, machine-learning supervisors, or other tes-
ters/operators share the blame if the system fails. Although the multiple sources of error
should make any operator reluctant to trust the system, this fragmentation of (moral)
responsibility may also increase the boldness of some operators (Campolo & Crawford,
2019, p. 12). The role of the operator of emergent systems, however, should not be that of
Milgram’s test subjects. As part of the reinforcement or ‘post-learning’ of the system, the
operators should adhere to the values of research ethics which are more or less identical to
the socio-ethical values pointed out by the EC guidelines on trustworthiness. Similar values
are central to policing as well.1” Thus the trustworthiness of the emergent system hinges on
the trustworthiness of the user. With augmented powers comes increased responsibility.

Use of untrustworthy equipment in irresponsible manners is, of course, hard to defend
morally. The simple solution would be to prohibit emergent technology in policing.
However, early adoption or aggressive testing of less than trustworthy systems may seem
reasonable under some circumstances (Gartenstein-Ross et al., 2019).

Digital Dirty Harrys may cling to ambiguities of responsibility, and pragmatic forms of
integrity. They push the limits by appealing to the greater good. During the Cold War
‘missile gap’ crisis, the US government maintained that ‘every known technique should be

17. The Norwegian Police Act, for instance, emphasises officers’ duty to take into considerations concerns of human
rights (Police Instruction § 3-1), privacy (in terms of ‘public exposure’, Police Act § 6), fairness (‘proportionality,
Police Act § 6, Police Instruction §5-2), impartiality (i.e. ‘avoid bias, Police Act § 6), and accountability (Police
Instruction § 7-6).
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used and new ones developed to increase our Intelligence by high altitude photographic
reconnaissance and other means’, and that ‘no price would be too high to pay for the knowl-
edge to be derived therefrom’ (Dulles, 1954, p. 1). More recently, The Police Foundation
applauded comprehensive airborne city surveillance, covertly tested by the Baltimore Police
Department, arguing that...

...[t]he police do not always have the luxury of waiting until research yields scientific evidence
about the efficacy of a particular approach. When people are dying the police must act to stop
the violence — even when doing so carries a degree of political risk (...) This is the hallmark of
courageous leadership and should be acknowledged (the lack of clarity regarding the implemen-
tation of the program notwithstanding) (Police Foundation, 2017, p. 21).

Other commentators held the covert use of this emergent surveillance system to be both
undemocratic and immoral (Rector & Broadwater, 2016). But what do democracy and
morality require? Is there an acceptable, pragmatic interpretation of trustworthiness? After
all, the values that trustworthiness encompasses according to the European Commission
(transparency, privacy and security), may be up for reinterpretation in a smart city, surveil-
lance capitalist era (Zuboff, 2019, pp. 35-37). Further, the capabilities of dubious systems
may be utilised by deviant groups and also by other professions, and there might be morally
intense situations where the public expects the police to push the limits. For instance, even
if the Norwegian police do not, at present, utilise genealogic genetics, other police forces do,
and private providers offer various forms of genetic analyses. The questions of when and how
emergent measures should be utilised could benefit from a broader discussion.!8 Initiatives
by inventive police officers, like the submitting of crime-scene DNA to GEDmatch as one’s
personal DNA, the performing of private social media searches that leave electronic traces,
or private testing of Clearview Al, are cyber-symptoms of a need for a more robust strategy.

Establishing a high level of trustworthiness (TRL10) for police technology is time-con-
suming, and police forces may easily find themselves out of synch with fast-paced tech-
nological and societal developments. The life cycle of emergent products may also be so
short that by the time they are deemed ‘operational’ the next big thing is already out, or
criminals may have found effective countermeasures (Gartenstein-Ross et al., 2019). If the
police cannot keep up with the trends, they are easily outsmarted, and militarisation or old-
fashioned Dirty Harryism may be the only responses available. But brute force seems mis-
placed in an ever ‘smarter’ society. Being at the forefront of technological innovation, on the
other hand, seems to require live testing of unfinished technology, that is, to some extent
Digital Dirty Harryism.

Now, one may agree with Waddington (1999, p. 299) that much police work is in fact
‘dirty work’, and that the primary function of the police is the use of coercion. The pres-
ent-day focus on accountability and trustworthiness are just novel forms of ‘concealment
and circumlocution’ (Klockars, 1988) of this brutal fact. In ‘Ruthlessness in public life’, the
philosopher Thomas Nagel (1979) argues that people are often willing to grant government
officials some moral leeway, if it serves the interest of the public. Still, Waddington, Klockars,
and Nagel hardly claim that ‘anything goes’, or, that suboptimal solutions or practices should
be promoted. Rather, the police ought to be one step ahead of the crime trends; they ought to

18. As Wienroth (2020b, p. 594) writes: ‘Forensic genetics in criminal justice reflects on the social, even political
nature of the ways in which socio-technical innovations are debated, legitimised and deployed.
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anticipate novel forms of crime rather than work pre-emptively (Halvorsen, 2018, p. 29). In
our context, it is the lack of technical situational awareness and planning that make impro-
vised solutions necessary. Klockars (2005, p. 583) argues that three criteria must be fulfilled
in order to justify ‘dirtiness’ — or in our context: using less than trustworthy means.

The first criterion states that the method (here: emergent Al) must actually be able to
provide the promised output. As we have seen, the hype claims that the Clearview Al applica-
tion does so. Still, there are reasons for questioning its data quality. ‘Scraping’ social media
with its millions of fake accounts for images hardly ensures data integrity. Over time, the
algorithm/valuing mechanism of the system may to some extent compensate for a less than
optimal learning database, and the system’s reliability may also increase through repeated
successful in-field use. But anecdotal success cannot establish trustworthiness in general.
Proper testing demands a methodical search for the weaknesses of the technology. The reli-
ability criterion can probably only be reached through actively seeking out system vulner-
abilities (Popper, 1963).

If it seems likely that ‘dirty means’ can produce the information in question, Klockars
adds that it must be the only way of finding that information. In other words, if all other means
and methods fail (or are obviously futile), it might be acceptable to utilise experimental
systems. A 3D model based on phenotyping may perhaps help investigators to generate ideas
‘outside of the box’ or reduce the scope of an investigation. It may thus point the police in the
direction of possible persons of interest, in much the same manner as unreliable informants
may provide leads in a case. If trustworthy methods such as genotype testing can corroborate
the ‘findings’ of phenotype 3D modelling, the latter may at least be instrumental in the pro-
duction of trustworthy investigative leads. If further reliable steps are available, both of the
above-mentioned Al applications may jumpstart trustworthy knowledge production. Still,
this is dependent on a responsible human governing the loop. The temptation to trust and
over-use such emergent means should be tempered by awareness of system limitations and
side-effects.

In addition, according to Klockars, it must also be likely that the output will produce a
morally good end. One might argue that the WW2 Nazi hypothermia research provided
useful results, as the results indicate the upper timeframe for rescue operations in the North
Sea in wintertime. Having such knowledge would be an asset to rescue crews — and poten-
tially to those lost at sea — but the grotesque killing of the research subjects precludes the
possibility of a morally good end to the research project.!® In addition, the project was ill-
designed, and also failed the first two criteria.

Even if the emergent technologies presented above are less grotesque, they should not be
allowed to take exception from moral constraints — on the contrary. If shrouded in secrecy,
the assessments of their moral goodness (if any) are limited to the parties ‘in the know” and
typically focus on short-term gains. Techno-optimism may serve to demonstrate the valid-
ity of Amara’s law, i.e. that the short-term effect of technology is usually less than expected,
whereas the long-term consequences (and side-effects) are typically greater.2? In a longer-
term perspective, the interests, concerns, and expectations of all parties involved ought to
be included. For instance, what are the side-effects of violating private data ownership of
citizens through a third-party application (as in the Clearview case)?2!

19. Conducted in Dachau (Berger, 1990). The discussion about whether the use of the studies would serve to honour
the victims of this research, or the opposite has been shelved as the study lacks both moral and scientific integrity.

20. Coccia (2020) claims that artificial intelligence itself is a paradigmatic example of said law.

21. That the police seek matches to Joe Public’s photo is probably valuable information for a company considering
employing Joe.
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Klockars’s three criteria state the conditions for possible utilisation of emergent technol-
ogies, and as we have seen, the operators should be highly attentive to their own role in
the loop. They should, I would like to suggest, consider themselves as research staff or ‘beta
testers’ in the development cycle.

6. Critical thinking, testing, trustworthiness

The mentioned criteria are easily justified in a crude utilitarian framework, but the classical
utilitarian requirements of considering long-term utility and side-effects (duration, fruit-
fulness, purity) for all involved parties deserve closer scrutiny?2. A thorough ‘pre-learning’
phase and beta-testing?? do not guarantee the legitimacy of the system, as beta tests typically
address functionality, accountability and reliability in the technical sense.

It is difficult to imagine Al trustworthiness, as defined by the European Commission,
without a ‘post-learning’ controlled test regime. Ethical and social robustness (legitimacy)
requires comprehensive testing, similar to clinical drug/therapies trial regimes. The latter
take place in several stages, first as small-scale tests, then larger scale, and finally, in some
form of ‘post market surveillance trials’ to make sure that the drug/therapy/system works as
advertised in practice (Pegoraro et al., 2007, p. 160). In addition, research projects involv-
ing people must be vetted by research ethics committees (RECs) up front, and clinical trials
require the informed consent of those exposed to the testing.

In large-scale, later stage trials (100+ research subjects) new interventions or drugs are
compared to existing ones in randomised trials, providing knowledge of whether the results
are due to the new intervention, or luck, coincidence, or the competence of the ‘research
staff’ In medicine, new drugs are seldom approved by health authorities unless they are
tested at this level. Similarly, nor should emergent police technology. Thanks to the com-
prehensive test regime, drugs come with reliable information about dosage, limits of use,
probabilities for side-effects, etc. The testing regime also helps uphold a professional value
system within medical research, a cultural feature that should not be taken for granted.
The situation is different in the cyber world. Most programs/apps, even the Internet itself,
contain grave and notoriously undocumented security issues (Schneier, 2018). The police
should not contribute to this sorry state of affairs.24

In the case of emergent police technologies, it is understandable that the police are reluc-
tant to reveal the full scope of their new capabilities. Citizens may well protest to being
exposed to the new, potentially intrusive, measures. Further, openness may incite the pro-
duction of counter-measures before the efficacy of the emergent technology is established
(Gartenstein-Ross et al., 2019). However, far from all police technologies require a shroud of
secrecy. In our context, 3D phenotyping modelling and forensic genetics analyses are types
of socio-technical innovation that involve so many aspects that they are actually in need of
wide ‘professional and public discourses about law and order, criminality (...) [that may
guide] adoption, appropriation, and further innovation’ (Wienroth, 2020b, p. 595). Other-
wise, it is impossible truly to establish their legitimacy.

22. Cf. Bentham’s felicific calculus, see Troyer (2003).

23. See https://www.softwaretestinghelp.com/beta-testing/ for an overview.

24. In addition, one conducts late stage or ‘post market’ trials of approved drugs. The main purpose of such large-
scale trials is to study short/long-lasting side effects and safety, which require large groups of people to be studied
over time.
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Comprehensive testing regimes involve research investigators, people actually doing the
testing (police officers), and test subjects exposed to the trial (the public). In some cases,
it may seem far-fetched to seek informed consent from the public in order to test cutting-
edge police technology. However, if reliability, moral legitimacy, and social robustness are
important issues, one could certainly do worse than seek public consent. At least, the delib-
erative horizon cannot be confined to the policing cultures and investigative practices alone,
as emergent, possibly disruptive technologies in addition typically involve and concern
many parties: ‘scientific cultures, legal and regulatory frameworks [...]; the market (forensic
service provision and technology development), subjects of technology use (e.g. victims and
their families, suspect individuals or communities)” (Wienroth, 2020b, p. 594), as well as the
public in general. If this is the case, informed consent or other expressions of participation
ought to be required. In practice, citizens might willingly consent to sharing both photos and
DNA if the purpose is only to train algorithms into being less biased or to construct faces
more reliably. But this hinges upon there being a high degree of public trust in the police. As
documented by the British police (Metropolitan Police Service, 2020), live testing is possible,
also for surveillance measures. In contrast, secretly using rogue facial recognition applica-
tions hardly serves to increase trust.

7. Concluding remarks

Should the police make use of emergent Al technology if it is likely to produce a favour-
able outcome? The answer seems to be a qualified ‘yes) insofar as the information sought is
important and obtainable by no other means, and the risk of suffering injury — both short
and long term — is proportionate to the good to be gained, and serves a just cause (Bellaby,
2012, pp. 114-115). As professionals, the police have a duty to be up to speed on social and
technological developments — but not in a haphazard manner. As we have seen in the case of
Clearview Al, the application may work, but the police officers using the application seem,
more or less unknowingly, to have taken the role of beta-testers, submitting sensitive data
to a private company. In addition, its database is ‘stolen) and the potential citizen victims
of this ‘experiment’ were not informed. In sum, it seems like a paradigmatic case of irre-
sponsible use of dirty technology. Private live testing of hyped-up tools might be tempting,
but is morally unacceptable. As a general rule, the research subjects should be informed and
consenting to being exposed. If secrecy is absolutely necessary, at least representatives of the
people (e.g. control committees) must be able to give some form of consent by proxy.

However, as trials are time-consuming, there will still be scenarios where it seems permis-
sible and perhaps appropriate to push limits. In medicine, too, there are situations where
‘off-label’ and ‘unlicensed’ use of approved drugs is considered acceptable (McIntyre et al.,
2000), and the recent, rushed development of Covid-19 vaccines provides a striking example
(Rupali et al., 2020). Admittedly, in the context of policing, such grey zones may invite
function creep and Digital Dirty Harryism. In general, it is better to be well prepared, than
caught-off by exceptional circumstances. Fostering environments for police innovation and
research that are capable of facilitating the testing of emerging systems —also in terms of their
moral and social aspects — seems like a reasonable requirement. Undoubtedly, grey zones
will still occur, but they should be made as small as possible.

Pushing moral limits may to some represent a display of strength and courage. To others
it represents a foolish lack of foresight, justified by ‘exceptional’ circumstances that most of
the time would have been anticipated by a technologically and socially vigilant police force.
With the advent of smart cities and the increase in cybercrime, a scientific, forward-looking



16 JENS ERIK PAULSEN

culture seems like a requirement for policing. In any case, the police should avoid ending
up, as Schneier (2018, p. 20) writes, discussing 215t century phenomena, using 20t century
language, and fighting them with 19t century means.
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