
Blockhashing as a forensic method

Kurt H. Hansen

A minor thesis submitted in part fulfilment of the degree of M.Sc. in
Forensic Computing and Cyber Crime Investigation with the supervision

of Dr. Nhien An Le Khac

School of Computer Science and Informatics

University College Dublin

August 1, 2016

Blockhashing as a forensic method

Abstract

In computer forensics investigation, there has always been a battle in which the o↵enders
find new methods to hide their illegal activity and the investigator find countermeasures
to these methods.

The most common method to use to hide illegal activity is to hide data connected
to the illegal activity by making the material unavailable. There are several methods
to make data less available. These could be techniques to encrypt the content, to hide
the content by using steganography or just erase the compromising files. Erasing data
content is probably the most common method to get rid of compromised data. There
are several techniques to erase data files, but the most common is to use a file explorer
in the operating system to erase the file. Such erasure does not have any impact on the
actual data content, only the file meta-data. More sophisticated tools both erase the file
meta-data and overwrite the file content with other more or less random content.

The most common method, using the file explorer to remove the file from the file
listing is a prerequisite for this project. We call this ordinary file erasure. Files erased
this way will have the content unchanged in an unpredictable time of period, but as the
time goes, more more of the erased content and will be overwritten by new files.

There are already methods to reveal file content erased by ordinary file erasure. These
methods include file carving that searches for patterns to make it possible to reveal the
content. File carving is a method if the erased file content is not overwritten, but as the
file content is increasingly overwritten, the file carving method is less relevant. When
files are partially overwritten, there are still possibilities to identify the original content
from the existing fragments.

Technically, it is possible to identify pieces of information compared to other refer-
ence files and research papers have proved this by comparing small pieces of data from
a file system with pieces of data from reference material. The technique is known, but
the problem of implementing this as a forensic method in an investigation has not yet
been solved so far.

1 of 140 August 1, 2016

Blockhashing as a forensic method

In previous work, the technique is demonstrated in relatively small amount of data
and there is no research to implement this as a valid method that ensure the findings
can be used as admissible evidence in court.

The contribution of this work is to conduct a research by using larger datasets and
evaluate block hashing as a forensic valid method. The goal of the proposed project is
to describe a robust methodology to use block-hashing as a forensic method to discover
fragments of previously stored objects.

2 of 140 August 1, 2016

Blockhashing as a forensic method

Acknowledgement

I would like to express my gratitude to my supervisor Dr. Nhien An Le Khac for the
useful comments, remarks and engagement throughout the learning process of this mas-
ter thesis.

Furthermore I would like to thank Dr. Fergus Toolan at the Norwegian Police Univer-
sity (NPUC) for valuable input during the process of writing the thesis and proofreading
this document.

Also, i would like to thank Associate Professor Rune Nordvik at NPUC, who has
willingly shared his precious time during the process of writing the thesis and have been
a valuable sparring partner during the process.

I would also like to express my gratitude to my employer NPUC that o↵ered me
time to do a lot of study during my working hours with a special thank you to Police
Inspector Ivar L. K. Husby at the NPUC.

3 of 140 August 1, 2016

Blockhashing as a forensic method

Contents

I Introduction 10

1 Introduction 11

1.1 Motivation and Background . 11

2 Litterature Survey 13

2.1 Forensic Methodology and Legal aspects 13
2.2 Hash algorithms, Entropy and Block size 15

2.2.1 Hash algorithms . 15
2.2.2 Entropy . 16
2.2.3 Block sizes . 21

2.3 block-hashing . 21
2.3.1 Sliding block-hashing . 22
2.3.2 Aligned block-hashing . 23
2.3.3 Data Reduction in large datasets 23

2.4 Existing block-hashing tools . 24
2.5 Verification . 26

II Problem Statement and Methodologies 27

3 Problem Statement 28

3.1 Is block hashing a recommended, sustainable method to identify presence
of the reference data to use as admissible evidence in court 28
3.1.1 Define criteria to ensure blocks in reference and target data are

the same . 29
3.1.2 Setting bias for amount of mutual data between reference and

target data . 29
3.1.3 Optimal block size to use . 29
3.1.4 Other factors to approve or disapprove the method as robust enough 29
3.1.5 Verifiable . 30
3.1.6 Is it feasible to combine the above criteria to ensure the technique

produce admissible evidence . 30

4 Research Methodology 31

4 of 140 August 1, 2016

Blockhashing as a forensic method

4.1 Creating datasets . 31
4.2 Collision probability . 32
4.3 Entropy bias . 33
4.4 Optimal block size . 33
4.5 Determine bias for coinciding and coherency of blocks 34

III Evaluation 35

5 Experimental setup 36

5.1 Hardware . 36
5.2 Software . 37
5.3 Challenges in hardware/software and datasets 37

6 Experimental Sources 38

6.1 Datasets . 38
6.1.1 The creation of the datasets . 39
6.1.2 Details about the datasets . 40

7 Description of Results 45

7.1 Results from dataset 1, msc database . 45
7.2 Results from dataset 2, msc pictures database 48
7.3 Results from dataset 3, msc case database 53

7.3.1 Detecting hash collisions in unallocated blocks 54
7.3.2 Detecting equal blocks in reference data and unallocated areas . . 54
7.3.3 Detecting hash collision in blocks from unallocated areas 56
7.3.4 Analysing hits between reference data and unallocated area 57
7.3.5 Connection between common blocks in unallocated areas and ref-

erence files . 63
7.4 Results from dataset 4, misc datasets . 77

7.4.1 Database msc veracrypt . 77
7.4.2 Database msc text . 77
7.4.3 Entropy in di↵erent file types . 80

IV Discussion and Conclusion 82

8 Discussion 83

8.1 Optimal hash algorithm to identify coinciding blocks 84
8.2 Optimal Block Size to qualify the method 84
8.3 Entropy to qualify the method . 86
8.4 Continuous blocks to qualify the method 87
8.5 False positives/hash collisions . 93
8.6 Other factors with influence of the method 94

5 of 140 August 1, 2016

Blockhashing as a forensic method

8.7 The combination of block-size, entropy and continuous blocks 96
8.8 Criteria for documentation . 98
8.9 Verification of findings . 99
8.10 Other factors influencing the method . 100

9 Conclusion 102

9.1 Is block hashing a recommended, sustainable method to identify presence
of the reference data to use as admissible evidence in court 103
9.1.1 Define criteria to ensure blocks in reference and target data are

the same . 103
9.1.2 Setting bias for amount of mutual data between reference and

target data . 103
9.1.3 Optimal block size to use . 105
9.1.4 Other factors to approve or disapprove the method as robust enough106
9.1.5 Verifiable . 107
9.1.6 Is it feasible to combine the above criteria to ensure the findings

are admissible evidence ? . 108
9.2 Investigative skills . 108
9.3 Further work . 108

V Appendices 114

A Scripts 115

A.1 Python Scripts . 116
A.1.1 Python script to create filehashes 116
A.1.2 Python script to create blockhashes 119
A.1.3 Python script to blockhash the case 125
A.1.4 Python script to remove duplicate files in video database 127
A.1.5 Python script to calculate average color of the jpg pictures 129
A.1.6 Python script to convert JPG pictures to BMP-2 131
A.1.7 Python script to blockhash the BMP-2 files 133
A.1.8 Python script to create block maps of hits on references to unal-

located . 134
A.1.9 Python script to create block maps of blocks located in unallocated

area of pre-existing files . 136
A.1.10 Python script to calculate average entropy on file types 138
A.1.11 Python script to extract unallocated blocks from NTFS file system 138

A.2 SQL Queries . 140

6 of 140 August 1, 2016

Blockhashing as a forensic method

List of Figures

2.1 Shannon entropy based on 2 bits (coin flip) 17
2.2 Shannon entropy based on 8 bits . 17
2.3 Shannon entropy based on 8 bits . 18
2.4 Uniform distribution of probabilities . 18
2.5 A perfect block with entropy of 1 . 18
2.6 Calculation of uniform distribution of probabilities 19
2.7 Spectrum of Approximate Entropy Calculations [31] 19
2.8 Principle sketch of sliding block-hashing 22
2.9 Principle sketch of aligned block-hashing 23
2.10 Block-hash search documentation in X-Ways Forensics 25

7.1 Average color spread. 49
7.2 Visualisation of the color spread. 49
7.3 Average entropy in JPG pictures per block-size. 51
7.4 Average entropy in BMP-2 pictures per block-size. 52
7.5 Block map of reference object 1, block size 4096 59
7.6 Block map of reference object 9, block size 4096 59
7.7 Block map of reference object 13, block size 4096 60
7.8 Block map of reference object 20, block size 4096 60
7.9 Block map of reference object 24, block size 4096 60
7.10 Block map of reference object 1, block size 512 62
7.11 Block map of reference object 9, block size 512 63
7.12 Block map of reference object 13, block size 512 64
7.13 Block map of reference object 20, block size 512 65
7.14 Block map of reference object 24, block size 512 66
7.15 Block map of placement in unallocated areas object 1, block size 512 . . . 68
7.16 Block map of placement in unallocated areas object 9, block size 512 . . . 69
7.17 Block map of placement in unallocated areas object 13, block size 512 . . 70
7.18 Block map of placement in unallocated areas object 20, block size 512 . . 71
7.19 Block map of placement in unallocated areas object 24, block size 512 . . 72
7.20 Block map of placement in unallocated areas object 1, block size 4096 . . 73
7.21 Block map of placement in unallocated areas object 9, block size 4096 . . 74
7.22 Block map of placement in unallocated areas object 13, block size 4096 . . 74
7.23 Block map of placement in unallocated areas object 20, block size 4096 . . 75

7 of 140 August 1, 2016

Blockhashing as a forensic method

7.24 Block map of placement in unallocated areas object 24, block size 4096 . . 76
7.25 Average entropy in AES encrypted container per block-size. 78
7.26 Average entropy in ASCII text per block-size. 79
7.27 SHA256 hash collisions and duplicate blocks in ASCII text per block-size. 80

8.1 Example of few spread blocks non sequential and non continuous 88
8.2 Example of large chunks of common blocks found sequential and ordered

in both the reference and target data . 89
8.3 block map of reference object 1, block size 4096 90
8.4 block map of placement in unallocated areas object 1, block size 4096 . . 91
8.5 block map of reference object 13, block size 4096 91
8.6 block map of placement in unallocated areas object 13, block size 4096 . . 92
8.7 Data-reduction possible side-e↵ects . 95
8.8 Example of continuous blocks 512 vs 4,096 byte blocks 97
8.9 Reconstruct with verification common block from reference and target data100

9.1 The block-hashing method illustrated. 109

8 of 140 August 1, 2016

Blockhashing as a forensic method

List of Tables

4.1 Example records from dataset 2, the msc picture filename-database 32
4.2 Example records from dataset 2, the msc picture database using 512 byte

blocks . 32

5.1 Setup of the Supermicro X9DAi computer 36
5.2 Setup of the Macbook Pro . 37
5.3 Software . 37

6.1 Overview of databases and their purpose 38
6.2 Number of di↵erent video types to block-hash 40
6.3 Database: msc . 41
6.4 Database: msc pictures . 42
6.5 Database: msc case . 43
6.6 Miscellaneous datasets . 44

7.1 Average entropy in vidoes . 45
7.2 Detection of collisions in video file blocks in database msc 46
7.3 Detection of collisions in JPG file blocks in database msc pictures. 50
7.4 Detection of collisions in BMP file blocks in database msc pictures. 50
7.5 Average entropy in jpg pictures on block-size. 51
7.6 The table of reference files from KRIPOS. 53
7.7 Collisions in blockhash unallocatedNNN where NNN is the block-size. . . 54
7.8 Tables in cross query between reference blocks and from unallocated clusters. 55
7.9 Number of hits per reference file in the suspect,s unallocated area. Sorted

by hits and block-size of 512 bytes. 56
7.10 Number of hits per reference file in the suspects unallocated area. Sorted

by hits and block-size of 4 096 bytes. 57
7.11 Average entropy in veracrypt AES encrypted container 77
7.12 Average entropy in ASCII text . 78
7.13 Collisions on di↵erent block sizes in msc text database. 79
7.14 Average entropy on di↵erent file types. 80

8.1 Detection of collisions in video file blocks in Dataset-1, block-size 4,096 . . 99

9 of 140 August 1, 2016

Blockhashing as a forensic method

Part I

Introduction

10 of 140 August 1, 2016

Blockhashing as a forensic method

1
Introduction

1.1 Motivation and Background

After computer forensics became a profession two decades ago, we now see that almost
all types of criminal cases involve electronic evidence. Typically criminal cases with
electronic evidence twenty years ago, were cases involving child abuse with sharing of
pictures and videos of children. Other typical cases were fraud, counterfeit, abuse of
data systems and a few other areas of criminal activity. Today, the typical case does
not exist and all type of criminality involves electronic evidence. We now have a more
broad range of data subject related to crime and there are alternatives to local stored
pictures, videos and documents, but this kind of data objects still exists but often in a
larger scale. Two decades ago, digital cameras/videos were not common. Today, this is
something almost everyone have in the modern world.

Twenty years ago, a typical child abuse case involved a few hundred or maybe up
to a few thousand media files, we now see cases with millions of pictures/videos 1. In
the Spanish pedophile operation ”Penalty”, 66 persons were charged for downloading 48
million child abuse pictures 2.

1
http://legacy.king5.com/story/news/local/2014/08/02/13048690/

2
http://www.eurekaencyclopedia.com/index.php/Category:Pedophilia Law Enforcement

11 of 140 August 1, 2016

Blockhashing as a forensic method

A major problem investigating child abuse cases, is to connect the abuse material
to the abuser (often the one taking the picture/video) and the victim. Many of the
child abuse cases are initialized by world wide or national operations run by the central
investigation units in one or more countries. Some of these cases targeting file sharing
services on Internet (P2P networks). In Scandinavia there have been numerous such
operations, like operation ”Enea” where 153 Norwegians was charged for downloading
through the P2P network FastTrack. In this operation the Police downloaded the abuse
material the di↵erent o↵enders shared on this network. The police collected these files,
made digital signatures of each file and distributed this to the local authorities where
each o↵ender is located.

As an investigator on some of these cases, one of the challenges was to connect the
reference material to the o↵ender. One reason could be that the suspect has erased
the illegal material, another is that the person is innocent. If the evidence is erased
a while ago, the chance of finding these pictures/videos by using carving techniques is
very limited. While erased data content remains unchanged for a limited period of time,
fragments of the data content remain for much longer, at least on storage where avail-
able free space is high. Carving techniques basically have the intention of recovering the
whole object (file, document, video etc.).

This project involves identification of fragments from previous known data files with
parameters to ensure we have fragments from the actual file and not another similar file.

The overall motivation for this project is to use identification parameters to compare
pieces of data from a target source with pieces from a reference file by setting di↵erent
criteria to ensure the pieces on the target is from the same object as the reference. Tech-
niques to compare two equal sized blocks of data are well known and involve creating a
digital signature of the two blocks and comparing these against each other. To create
this signature we use well established hash algorithms like MD4, MD5, SHA-1, SHA-2,
SHA-256, SHA-512 etc.

A challenge in this type of comparison is to exclude blocks we could expect to occur
frequent in a dataset. Another challenge is to determine how many such equal blocks
we need to have to ensure the fragment came from the same object as the reference
material. Finally there are several sub parameters that could influence using this as a
forensic method. One is the ability to make such comparison in a large scale related to
a reasonable data-power available.

12 of 140 August 1, 2016

Blockhashing as a forensic method

2
Litterature Survey

Several key elements are important in this research project. Factors such as forensic
methodology, legal aspects, entropy, hash algorithms, block-size, block- hashing and
verification. This chapter is divided into five key elements.

2.1 Forensic Methodology and Legal aspects

The general forensic methodology has nothing specificly about hashing blocks or piece
wise search for data fragments. SANS Intitute has created a forensic methodology de-
scribing all steps in the investigation [6]. The block-hashing is not mentioned specifically
but the importance of performing hash verification is throughout the paper. Most of the
research on the block-hashing has a major focus on the technical aspects and is more
described as a proof of concept. The relevant factors to have an approved methodology
to perform such forensics is covered less. Di↵erent factors like block size, common blocks
and hashing is more deeply covered. Entropy is just briefly covered.

None of the papers have a description or suggestion of how such a methodology
should be when we come to quantity of evidence, quality of evidence and other factors
to approve this as a forensic method. In an existing methodology, block-hashing could
located in the part already covering carving and file signature analysis.

13 of 140 August 1, 2016

Blockhashing as a forensic method

Block hashing is so far not found in any legal case referred to in my own country
or elsewhere. According to general legal, the strength on an evidence rely on di↵erent
factors. If we use some analogy here, we could compare this to a ”normal” case where
we have a suspect and a victim. At the crime scene, the police found di↵erent evidence.
This evidence includes a shirt. A witness related to the suspect confirm that the suspect
have exactly the same shirt as found on the crime scene. Same color, size, logo and the
same vendor. This have no evidential meaning at all and is best treated as circumstantial
evidence. In a city, several hundred could have the same shirt.

To become admissible evidence, the shirt from the crime scene must have other con-
nections to the suspect. This is information such as DNA found on the shirt, spots
located in certain places on the shirt, damage or other traces. This are the same ques-
tions we need examine in this project. We need to qualify and quantify the findings. It
is not enough to confirm that two pieces of data are exactly equal from the reference
material and the target object. On a normal data disk there are millions of blocks and
many of these blocks are equal. A typical repeating block is a block of 512 bytes filled
with equal values like only zero values (hexadecimal 0x00). This is a common block also
in file objects. By comparing the reference blocks with the target blocks, we could end
up having thousands of hits on typical repeating blocks.

This type of repeating block is also described as common blocks in [14] with reference
to [12]. There is also such data blocks that is not that repeating, but we could find a
few equal block common to both the reference and target data. This could be just a
single block or just a few. To classify a hit between reference and target as admissible
evidence we need to have some rules when it comes to quantity and quality.

In traditional forensics we perform hash verification on files and disks/disk images.
When one file is hashed with a reliable hash algorithm compared to another file with
same algorithm and have the same hash value, we are certain about the equality of these
files, at least when it comes to files with a certain amount of content. Hash algorithms
as a method to compare and ensure equality is not directly implemented in the the law
books, but several articles have been written about the subject.

An article in the Indian ”Magazine for Legal Professionals & Students”, the use of
hash algorithms is described 1Authentication and Admissibility in Indian Perspective.

1
http://lawyersupdate.co.in/LU/1/1288.asp

14 of 140 August 1, 2016

Blockhashing as a forensic method

2.2 Hash algorithms, Entropy and Block size

2.2.1 Hash algorithms

The main identifier on the di↵erent blocks of data is a calculated hash value based on
the data content.

Hashing is a powerful and pervasive technique used in nearly every examination

of seized digital media. The concept behind hashing is quite elegant: take a large

amount of data, such as a file or all the bits on a hard drive, and use a complex

mathematical algorithm to generate a relatively compact numerical identifier (the

hash value) unique to that data. [29, p.9]

A hash is a digital signature of a data object and is an one-way calculation of the
content. A hash value is distinct for an arbitrary object of data and can be used to com-
pare if data objects are equal or not. Such a signature can only tell if two data objects
are equal or not and can not tell anything about the content or how equal/unequal two
or more objects are.

Two data-objects that are slightly di↵erent (just one bit or so) could have a very
di↵erent hash signature. There exist numerous hash algorithms and one of the most
known and most commonly used is the MD5 (Message Digest 5) [28] which is based on
a 128-bit calculated hash value. Collisions in this were detected many years ago. A
hash collision occur when two di↵erent set of data give the same hash value. The MD5
algorithm is not on the list of the US Department list of secure hashes [10].

Today, the more secure hashes are the SHA-1 [18], SHA-2 [32] and SHA-3 [20] al-
gorithms. SHA-1 [18]is not longer on the same list of secure hashes and therefore not
an option to use for this project. It is not always desired to use the most secure hash
as the more bits it is based on, the more bytes each hash value has in each database
record. Typically a SHA-256 will have a 64 byte string to represent the hash value while
SHA-512 will occupy 128 bytes. SHA-2 is a family of four hash algorithms, the SHA-
224/256/384 and SHA-512. The SHA-256 is the selected algorithm for this project. This
is an algorithm stated as secure due to the FIPS 180-4 publication [10]. This algorithm
has a theoretical probability of collision of 2256.

A collision occurs when two arbitrary data objects produce an identical hash. It is
then possible to substitute one object for the other.

15 of 140 August 1, 2016

Blockhashing as a forensic method

The dataset in one of the tables contains 15 billion records which is nearly 244. This
is a huge number of records and by using a strong algorithm, the probability of having
a hash collision in two or more unequal objects should be reduced to a practical min-
imum. There is not any detected collisions so far on this algorithm. This is also the
same algorithm used in the Bitcoin System [27]. The MD5 hash value is a 32 byte string,
SHA-256 64 bytes and SHA-512 that is even more secure, each value is a 128 byte string.
In a database with 15 billion records the MD5 will occupy u 0.5 TB, SHA-256 u 1 TB
and SHA-512 u 2 TB. This amount of di↵erences in storage space is severe and need to
been taken under consideration when deciding hash algorithms to implement. In order to
compromise strength and storage requirements, SHA-256 was considered the best choice.

In the two papers and dissertation in [12, 14, 15] the MD5 hash is used to perform
block-hashing. Other algorithms are briefly discussed but not implemented in the exper-
imental work. In [15], page 29 there is some thoughts about the use of MD5 as a hashing
algorithm for block-hashing as the algorithm is proved not to be collision resistant, but
the reason for using MD5 is the wide use of MD5 in the forensic community. That was
back in 2012 but that is still the fact in 2016. In [35] a method to break MD5 and other
hashes. This work claims that breaking MD5 is done within 15 minutes and MD4 in few
seconds. That was 11 years ago.

2.2.2 Entropy

Entropy is loosely defined as the randomness of a given data object and a measure of
this randomness is given as the result of certain mathematical calculations. Entropy has
been seen described as something to detect but entropy always exist on a data object.
Entropy is not to be detected but to be measured. Entropy is not only a calculation
used on data objects, but was initially used in thermodynamics and is followed by the
first and second law of thermodynamics.

The entropy related to data information is based on the Shannon Entropy, [30] and
from this, many entropy models are derived. Shannon entropy is much based on the
Boltzmann entropy [5]. Shannon entropy is tailored to information theory while Boltz-
mann is more specific to thermodynamics. A more general explanation of di↵erent
entropy models is described in [16].

There are four types of entropy:

16 of 140 August 1, 2016

Blockhashing as a forensic method

1. Shannon (specific) entropy H = �
NP
i
log2(

i
N)

H changes if you change how you express the data, i.e. if the same data is expressed
as bit, bytes, etc H will be di↵erent. So you divide by log(n) where n is the number
of unique symbols in the data (2 for binary, 256 for bytes) and H will range from 0
to 1 (this is normalized intensive Shannon entropy in units of entropy per symbol).
But technically if only 100 of the 256 types of bytes occur n=100, unless you know
the data generator had the ability to use the full 256. The value i is the number
of times symbol occurred in N.

2. Normalized specific entropy: H
log(n) Units are entropy (H)/symbol(log(n))

3. Absolute entropy S = N ⇥H

4. Normalized absolute entropy S = N⇥H
log(n)

The entropy we will use on this project is the first one, the Shannon entropy with
an entropy range from 0 to 1. A brief explanation in [33].

H = �
N=2P
i=1

⇢ilog2(⇢i)

Figure 2.1: Shannon entropy based on 2 bits (coin flip)

H = �
N=256P
i=1

⇢ilog256(⇢i)

Figure 2.2: Shannon entropy based on 8 bits

The two example formulas in 2.1 and 2.2 are the basic formulas. When we calculate
entropy on data objects like files or blocks or data, the actual formula is the one in
Figure 2.2. ⇢i is the probability of the event i

The formula in Figure 2.1 is the general formula which calculates an entropy between
0 and 1 while the one in Figure 2.2 calculates entropy between 0 and 8. This is because
the last one is based on 8-bit k values (each byte in a datao bject has 256 states, hex-
adecimal 0x00-0xFF).

The preferred range of presenting entropy is by using the original range from 0 to 1
and by converting the 8-bit to 1-bit, we will have the range between 0 - 1. This formula
is shown in Figure 2.3

17 of 140 August 1, 2016

Blockhashing as a forensic method

H = � 1
N=256P
i=1

⇢ilog256(⇢i)

Figure 2.3: Shannon entropy based on 8 bits

We will show a few examples of entropy for some 512 byte blocks.

A block with uniform distribution of probabilities where ⇢i =
1
N that gives an entropy

1.0 is shown in Figure 2.7. This block has a perfect spread between all possible 8-bit
values in the whole block and is explained with the following formula shown in Figure 2.4.

H = �
NP
i=1

(1
N)log2(

1
N) = log2(N)

Figure 2.4: Uniform distribution of probabilities

0000000: 0001 0203 0405 0607 0809 0a0b 0c0d 0e0f
0000010: 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
0000020: 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f !"#$%&’()*+,-./
0000030: 3031 3233 3435 3637 3839 3a3b 3c3d 3e3f 0123456789:;<=>?
0000040: 4041 4243 4445 4647 4849 4a4b 4c4d 4e4f @ABCDEFGHIJKLMNO
0000050: 5051 5253 5455 5657 5859 5a5b 5c5d 5e5f PQRSTUVWXYZ[\]ˆ_
0000060: 6061 6263 6465 6667 6869 6a6b 6c6d 6e6f ‘abcdefghijklmno
0000070: 7071 7273 7475 7677 7879 7a7b 7c7d 7e7f pqrstuvwxyz{|}˜.
0000080: 8081 8283 8485 8687 8889 8a8b 8c8d 8e8f
0000090: 9091 9293 9495 9697 9899 9a9b 9c9d 9e9f
00000a0: a0a1 a2a3 a4a5 a6a7 a8a9 aaab acad aeaf
00000b0: b0b1 b2b3 b4b5 b6b7 b8b9 babb bcbd bebf
00000c0: c0c1 c2c3 c4c5 c6c7 c8c9 cacb cccd cecf
00000d0: d0d1 d2d3 d4d5 d6d7 d8d9 dadb dcdd dedf
00000e0: e0e1 e2e3 e4e5 e6e7 e8e9 eaeb eced eeef
00000f0: f0f1 f2f3 f4f5 f6f7 f8f9 fafb fcfd feff
0000100: 0001 0203 0405 0607 0809 0a0b 0c0d 0e0f
0000110: 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
0000120: 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f !"#$%&’()*+,-./
0000130: 3031 3233 3435 3637 3839 3a3b 3c3d 3e3f 0123456789:;<=>?
0000140: 4041 4243 4445 4647 4849 4a4b 4c4d 4e4f @ABCDEFGHIJKLMNO
0000150: 5051 5253 5455 5657 5859 5a5b 5c5d 5e5f PQRSTUVWXYZ[\]ˆ_
0000160: 6061 6263 6465 6667 6869 6a6b 6c6d 6e6f ‘abcdefghijklmno
0000170: 7071 7273 7475 7677 7879 7a7b 7c7d 7e7f pqrstuvwxyz{|}˜.
0000180: 8081 8283 8485 8687 8889 8a8b 8c8d 8e8f
0000190: 9091 9293 9495 9697 9899 9a9b 9c9d 9e9f
00001a0: a0a1 a2a3 a4a5 a6a7 a8a9 aaab acad aeaf
00001b0: b0b1 b2b3 b4b5 b6b7 b8b9 babb bcbd bebf
00001c0: c0c1 c2c3 c4c5 c6c7 c8c9 cacb cccd cecf
00001d0: d0d1 d2d3 d4d5 d6d7 d8d9 dadb dcdd dedf
00001e0: e0e1 e2e3 e4e5 e6e7 e8e9 eaeb eced eeef
00001f0: f0f1 f2f3 f4f5 f6f7 f8f9 fafb fcfd feff

Figure 2.5: A perfect block with entropy of 1

18 of 140 August 1, 2016

Blockhashing as a forensic method

The block with entropy = 1 has two values (from hex 0x00 to 0xFF) through the
whole block and we could try the formula on the block to show the way to the calculated
normalized entropy. The calculation is shown in Figure 2.6.

H = � 2
512 ⇥ log256(

2
512)�

2
512 ⇥ log256(

2
512)�� 2

512 ⇥ log256(
2

512)

H = 0.00391 + 0.00391�+ 0.00391

H = 0.00391⇥ 256 ⇡ 1

Figure 2.6: Calculation of uniform distribution of probabilities

Figure 2.7: Spectrum of Approximate Entropy Calculations [31]

As shown in Figure 2.7, entropy can tell us something about the data content which
digital signatures cannot. Entropy is used in quantum mechanics related to energy and
thermodynamics. The short explanation of entropy is found in Stanford Encyclopedia
of Philosophy (http://plato.stanford.edu/entries/information/) and is described as: a
measure of the amount of uncertainty.

In previous work, [12] entropy as a qualification on blocks is to some extent explained.
that thesis uses the entropy value 0 to 8 is based on Shannon-entropy. In the same thesis,
the use of high and low entropy is referred to, but no connection between entropy related
to block size. In the same paper, the term high-entropy or low-entropy is not described.
On a entropy scale from 0 to 1, it is unquestionable that 0 is low entropy and 1 is high-
entropy. No literature was found to give a precise description on low, medium and high
entropy.

In [14], some entropy tests are performed specifically related to common blocks but
in a very low number of blocks. In [15] entropy is described in a general manner and
there was also some test regarding common blocks but also a few examples of repeating
blocks in PDF documents and in the OpenMalware 2012 dataset referred to from the
article.

19 of 140 August 1, 2016

Blockhashing as a forensic method

In [7] hash based carving was performed using graphic processors. The initial work
found no false positives using MD5 and SHA-1 on a dataset of 528 million sectors. The
same article focused on the smaller memory footprint lower strength hash algorithms
produce.

20 of 140 August 1, 2016

Blockhashing as a forensic method

2.2.3 Block sizes

In the prior work in [12, 14, 15] block sizes of 512 and/or 4,096 bytes have been used.
Block sizes such as 1,024, 2,048, 8,192 and 16,384 are not mentioned.

Until recently the default sector size on hard drives has been 512 bytes. Still the
size is widely used even if the 4,096 (4 KiB) byte sector-size is implemented as default
size [9]. On Apple devices such as iPhone and iPad, sector sizes of both 8 KiB and 16
KiB are observed. Sector sizes are relevant mostly to whole disks but when we come to
volumes on disk clusters or blocks are used. A cluster or block is one or more sectors
concatenated together. Typically we find default cluster size of 4 KiB in the NTFS file
system and the same default size in Apple HFS+ file system [8].

A phrase like ”ideal block size” about a file system does not exist and usually is not
required or desirable. Some volume set-up is fine tuned to a specific type of file to meet
requirements related to speed and storage economy. If we look into the home marked
segment, we might define 4 KiB as the ideal block-size since 95.5% of the operating
systems in the desktop market is Windows or OS X based 2.

2.3 block-hashing

Traditionally, hashing of data objects is very common in the digital forensics environ-
ment, but mostly to create hashes of whole objects such as a full disk, disk image or file.
block-hashing is a technique to create digital signatures from pieces of such objects [29].
In 2010 there was written an article ”Garfinkel [13] that focused on using block hashes
to perform sub-file forensics”. Sub-file forensics is the same as block-hashing used in this
project.

In [14] the term hash-based carving is used to describe the process of comparing equal
size blocks from files with blocks from a data media. This term is a good description on
the phase of comparing blocks, but the term is also a part of the whole block-hashing
process. In 2015 the same technique is described as ”Distinct Sector Hashes for Target
File Detection” [14].

In this project, the terminology block-hashing is used. The use of ”sub-file” in [13]
and ”Distinct Sector Hashes” [14] is technically the same but it‘s easy to relate these
two terms to either files or disk sectors. block-hashing is not specifically related to a
particular type of object and covers disks, files and other objects. In block-hashing the
objects are divided into smaller pieces and earlier work on this subject uses either 512
or 4,096 byte.

2
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=0

21 of 140 August 1, 2016

Blockhashing as a forensic method

There are other methods to perform block hashing such as fuzzy hashing which is a
method to detect likeness specially related to malware [24]. In 2006 there was written
an article ”Kornblum [22] that focus on identifying almost identical files used context
triggered piecewise hashing (CTPH)”. The article also focused fuzzy hashing. This
project has no intention of locating likeness but equality. The di↵erence is demonstrated
with the algorithms below where B is an arbitrary block of data. This project depend
on B1 == B2 while fuzzy hashing depend on B1 ⇡ B2. A more in-depth discussion of
fuzzy hashing is available in [19]. This project does not involve fuzzy hashing.

There are two major types of block-hashing, sliding block-hashing and aligned block-
hashing.

2.3.1 Sliding block-hashing

In sliding block-hashing, each block-hash has the same size, but the blocks are not aligned
to each other. This is demonstrated in Figure 2.8. Sliding block-hashes are described
in [22] as ”the rolling hash” and is basically the same thing.

In that example the block size is 64 byte and the sliding is 32 byte. This means that
each block has 32 bytes from the previous block. The most intensive search using this
method, is to set the sliding gap to one byte. By using the block size 64 as in the figure,
first block is hashed from o↵set 0-63, next from 1-64, 2-65 ...bS�64 � bS�1 where S is the
size of the object.

Using this method could be very e�cient, specially when we need to locate pieces of
information not aligned in the file system to sectors or blocks. This method is particu-
larly suitable for the location of malware that follows no such alignment to either sector,
block or not even files.

The downside of this method is the amount of block-hashes which will increase by
Block�size
Slidinggap which in our example from Figure 2.8 provide a multiple of 64

32 = 2. A block

size of 512 and sliding gap of 1 byte, gives us a multiply of 512
1 = 512.

0-63

32-95

64-127

96-159

128-191

160-223

192-255

224-287

256-319 512-575 768-831

800-863

832-895

Figure 2.8: Principle sketch of sliding block-hashing

22 of 140 August 1, 2016

Blockhashing as a forensic method

2.3.2 Aligned block-hashing

Block-hashing using alignment is the most obvious way of performing block-hashing on a
file system where all data is minimum aligned to sector size (512 or 4096 bytes). The only
data that is not aligned in a file system is the data inside objects like files. In that cate-
gory, we also define files copied into containers as not aligned to the file system boundary.

Even if operating with aligning to 512 or 4096 byte sector size, there is no problem
using multiples of these sizes and also fragments of these sizes. 2n

512

The principle of aligned block-hashing is shown in Figure 2.9 where we have a block
size of 64 byte

64-1270-63 128-191 192-255 256-319 320-383 384-447 448-511 512-575 576-639 640-703 704-767 768-831 832-895

Figure 2.9: Principle sketch of aligned block-hashing

The articles [14, 15] diverge between di↵erent block sizes and entropy is also men-
tioned, but not in depth. The article has no focus on determining bias for number of
blocks/contiguous blocks in conjunction with entropy. In the thesis of Kristina Fos-
ter [12] there was done a huge work on similar challenges. The thesis was not focused
on determining bias for entropy and the amount of hits to identify an object. In the two
papers in [14] and [15] the block size is discussed and the conclusion is rather vague but
it seems like a block size of 4,096 bytes is to prefer prior to 512 byte blocks.

2.3.3 Data Reduction in large datasets

Data reduction is a method to reduce the amount of data, usually in large datasets [25].
Typically, this is a method used in digital forensics to exclude known files from a set of
files in a disk image. By performing hashing of files in a dataset and comparing the hash
values with known files (files from known clean operating system installations, clean
installations of software or using other criteria to reduce the number of files). Another
method to perform data reduction, is to remove all files in a dataset with zero bytes
(empty files).

23 of 140 August 1, 2016

Blockhashing as a forensic method

This method could also be implemented in block-hashing forensics by reducing the
number of hash values in the database. This could typically be hashes from blocks with
certain known content like blocks filled with equal bytes (blocks with only 0x00, 0x↵
etc). Data reduction could also involve other criteria related to block-hashing. By elim-
inating all blocks with a very low entropy, the dataset could easily be reduced with a
huge amount of records in the database of hash values. A combination of the above ex-
amples is also possible. In [25], di↵erent theoretical methods to perform data reduction
are covered.

In [1] the method of using hash values to perform data reduction is covered and
gives a brief introduction to that method with reference to the NIST collection of hash
databases. The NIST NSRL (National Software Reference Library) is a large collection
of hashes from known files. None of the data sets covers hash values from pieces of data
(block hashes).

Another method to perform block-hash data reduction is to eliminate all hashes from
allocated data in a large data set of files on a disk or disk image. In normal circum-
stances, we could assume that many files on a disk/disk-image have been copied, the
original or copy have been erased and there is other forms of duplicates maybe erased at
a certain time. Usually, when using the block-hashing technology to discover pieces of a
reference file in a storage, we primarily search inside the unallocated area [2] described
as an area on a disk not used by any file system object which could contain information
from previous existing files or folders.

The allocated area is the opposite of the unallocated area and contain files, folders
and other objects registered in the file system. This method of performing data reduc-
tion is not found in any reference material but is an extension of the commonly used
”known files” hash data reduction. Neither of the papers and master thesis in [12,13,15]
discuss the data reduction topic in any context related to block-hashing.

2.4 Existing block-hashing tools

There are quite a very few sets of tools to perform block-hashing available.

In the master thesis [12] the experimental work is primary based on the md5deep
tool. This is a collection of tools that also support block wise hashing using di↵erent
block sizes and algorithms. This tool is not optimized to support large databases [12].

24 of 140 August 1, 2016

http://www.nsrl.nist.gov/Downloads.htm

Blockhashing as a forensic method

Guidance Software is the vendor of the widely used forensic analysis tool, EnCase.
The latest version is 7. As a bare application, there is limited functionality. By using
the EnCase scripting language, Enscript, it is possible to create additional functionality
for the tool. One of these scripts is the ”File Block Map Analysis script” [21]. The
technology is clear about hashing arbitrary number of reference files and compare it to
hashes from a disk or volume. The script reports what fragments of the file is found. It
is unclear how the script works, if there is any qualification of the di↵erent hits.

Another widely used forensic tool is the X-Ways Forensics too from X-Ways AG.
This is a tool with in-built functionality, and what is described as block-hashing [11].
The technology is the same principle as described about Encase. X-Ways only support
block hashes from a block size of 512 bytes.

Both Encase and X-Ways Forensics are closed source tools and the search technology
is not available. When starting a block hash search in X-Ways, it claims that blocks
with extremely high grade of repeating patterns are omitted. This could indicate use of
entropy or similar technology to determine variation in the blocks. There is no docu-
mentation on what criteria are in use to exclude certain blocks.

The X-Ways Forensics is tested in a sharp case and the documentation and possibil-
ities to ensure verifiability is covered to some extent. In Figure 2.10 we have an example
of documentation. This example shown where some hits are located in the volume of the
target data. There is no o↵set reference to where this hit relates to in the reference data.

h!p://4.bp.blogspot.com/-UOqhUILKx-w/VWstk_qK2EI/AAAAAAAAA5A/jJilMs6nuLs/s1600/BlockHash4.png

Figure 2.10: Block-hash search documentation in X-Ways Forensics

Brian Carrier refer to an article in the FBI forensic journal with the following text
block.

Manufacturers of software used for image processing may be required to make

the software source code available to litigants, subject to an appropriate protective

order designed to protect the manufacturer’s proprietary interests. Failure on the

part of the manufacturer to provide this information to litigants could result in the

exclusion of imaging evidence in court proceedings. This should be considered when

selecting software. [4, p.7]

25 of 140 August 1, 2016

Blockhashing as a forensic method

The FBI article is published on the www.fbi.gov domain. 3

Brian Carrier raises a principle question related to use of all forensic software and is
very critical of closed source software. Today, the major investigating tools on computer
forensic are closed source. Many of these tools have high credibility.

2.5 Verification

Verification in digital forensics is a well known term and implemented in several ways.
Verification are often connected to hash-verification where an arbitrary amount of data
is verified against a known hash to ensure validity. Research on hash verification and a
proposed verification model is suggested in [23]. Verification is not implemented in all
aspects of digital forensics and a secondary well established term is best-practise even if
the the connotation of the word forensic infers a scientific method.

Di↵erent topics in digital-forensics have a lot of research, but mostly related to tech-
niques and rarely on scientific tested methods.

Jason Beckett and Dr Jill Slay wrote an article in 2007, [3] which focus on validation
and verification in a dynamic work environment. The article opens with the challenges
in digital forensic work environment by high workload and less understanding to ensure
quality with a high focus on ”need for speed”. The same article focus on the important
principle of reproducibility, the ability to produce the same result using another tool or
do the investigation by another person.

To implement this into this project, we need to make procedures in the method
that ensure the principle of reproducibility. The research paper ”Validation and veri-
fication of computer forensic software tools - Searching Function” [17] have the same
focus on implementing paradigms that implement rules or procedures to ensure validity
of findings.

3
https://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/july2001/swgit.htm

26 of 140 August 1, 2016

Blockhashing as a forensic method

Part II

Problem Statement and
Methodologies

27 of 140 August 1, 2016

Blockhashing as a forensic method

3
Problem Statement

In this section we describe the research questions.
This project in focused on a single research question with several sub-questions

needed to define a sustainable method to qualify block-hashing as a valid forensic
method.

3.1 Is block hashing a recommended, sustainable method
to identify presence of the reference data to use as
admissible evidence in court

This is the main research question and it depend on the answers in the sub-questions.
The goal of this project, is to describe a valid method to ensure evidence is sustainable
and admissible in court of law. To ensure the findings are usable in court of law, we
need to set several criteria to ensure parts of the reference data can be verified in the
target data. The technique to make comparison between reference and target data is
already tested in several research papers [12,14,15] by comparing MD5 hash values from
one dataset with another using di↵erent block-sizes like 512 and 4,096 byte blocks.

28 of 140 August 1, 2016

Blockhashing as a forensic method

3.1.1 Define criteria to ensure blocks in reference and target data are
the same

This research question is basic in the block-hashing technique and is crucial to approve
the quality of the findings. What kind of algorithms should be used to compare target
blocks of data with blocks from the reference data. Prior works have used the MD5
hash algorithm entirely to compare equality. Is the use of a hash algorithm su�cient
for comparison or should we combine the hash algorithm with additional algorithms like
entropy ?

3.1.2 Setting bias for amount of mutual data between reference and
target data

When we have decided what algorithms to use to compare blocks described in research
question in 3.1.1, we need to have additional criteria to ensure the blocks in target
data are from same data object as the reference data. This question is a measuring of
quantity. To qualify the method, we need to have at least a certain amount of equal
blocks of same size in the two datasets. The challenge is to define number of mutual
blocks and how these blocks appears. Are the finding one or more chains of blocks or is
the mutual blocks found spread as single blocks ?

3.1.3 Optimal block size to use

The evaluation of block-size raise many aspects in this method of localize partly erased
evidence files. Is a small block-size (512 byte blocks) more reliable than using larger
blocks like 4,096 bytes or visa versa ? Selecting a block-size, will this have an impact on
the processing time ? Does the block-size have any unwanted side-e↵ects ?

3.1.4 Other factors to approve or disapprove the method as robust
enough

There are several other factors we need to evaluate. First of all, is it feasible to use
this method to identify presence of blocks from reference data in a data target. Does
processing power and time make the method useless in a practical case today with huge
amount of data, even on the home segment. Are hardware and software critical elements
in performing block-hashing as a method to detect mutual blocks ?

Is there any methods to reduce the amount of blocks, specially in the target data to
make the block comparison feasible ?

29 of 140 August 1, 2016

Blockhashing as a forensic method

3.1.5 Verifiable

By verifiable we mean the ability a third part have the ability to approve that the mutual
data found in the target dataset are the same as in the reference data. This is one of the
most important parts of an approved method to ensure the method is robust enough.
What information do we need to make sure all finding are verifiable and to what extent?

3.1.6 Is it feasible to combine the above criteria to ensure the technique
produce admissible evidence

By combining the criteria in Section 3.1.1 to Section 3.1.5, is it achievable to combine
these criteria to ensure the finding can be used as admissible evidence in court ?

30 of 140 August 1, 2016

Blockhashing as a forensic method

4
Research Methodology

The di↵erent research questions involves individual methods to answer and prior to an-
swering any of the questions, datasets was made to perform di↵erent tests.

How the di↵erent datasets was created and the purpose of these is explained further
in this chapter.

Each criteria (block size, entropy and coinciding blocks) are both separate parameters
and have dependency on each other.

4.1 Creating datasets

The project involves four datasets that involves more than 8 TiB of data. The datasets
are divided into equal pieces (blocks) of di↵erent sizes and the SHA256 hash of each block
in addition to the block entropy is stored in databases. There is one database per dataset.

A typical database in the project is created using MySQL as the database engine
and each database contains several tables with data records. One data record typically
contains information about each block such as o↵set in the source data. The source
is either a file-name or block number inside that source. In dataset 3, the msc case
database, is based on unallocated clusters. Here we only have reference to block number
in the unallocated area.

31 of 140 August 1, 2016

Blockhashing as a forensic method

Other data in the data set is the calculated SHA256 hash value that is a 64 byte
string. In addition, we store the calculated entropy for that particular block. The
SHA256 and the entropy value (1 bit entropy from 0 to 1).

id Filename MD5 Filesize

12290 G0010051.JPG 39348e4ca5cd339c05b062e188c89d2b 1382525
12291 G0010052.JPG 0dd76793066f449d1abb158a83a29f29 1387982
12292 G0010053.JPG 3aa5d9a8ea6434faef03e677f6e2f8b4 1388742

Table 4.1: Example records from dataset 2, the msc picture filename-database

id FileNum SHA256 BlockNum Entropy

1 12290 f8bed49a070f836c49c95a002091
1f1360c9e075774fd6943a1ad120282a6b34

0 0.41879

2 12290 8fa4d109c03f39befa652385c143
fe98af9230f9184424bd23948578658ce84f

1 0.17370

3 12290 003ab4d37db65e84e8e4cd261a59
f7256405f5dd090285b7559fabfc70fd190c

2 0.34229

Table 4.2: Example records from dataset 2, the msc picture database using 512 byte blocks

The table 4.1 is used as lookup for the database shown in table 4.2 and is used as
reference to the data-object (could be other than files like disk, volume, unallocated
area etc).

By using the database record set-up exemplified in Table 4.2 and 4.1 the need for
verification is covered by using reference to file and block inside the file. The same
method to process and document each block is used in all databases. In the database
from an example case, there is no reference to any file as all blocks are from one source,
the unallocated area and all block references are relative to the unallocated area.

4.2 Collision probability

A major part of this project is based on comparing block hashes inside a single database
table or between several tables to identify equality or not. This method is based on pro-
cessing hash values per block and comparing the reference block with the target block.
To perform this, SQL queries are used between di↵erent tables and fields containing
SHA256 hash values.

32 of 140 August 1, 2016

Blockhashing as a forensic method

By using queries on a single database table, it is possible to detect block collisions
in the same data set. By using queries between more than one table, it is possible to
detect equality of data from two data sources.

By using databases with a very high number of records, the reliability of the exper-
iments are higher than using smaller tables. With the phrase high number of records,
we are speaking about several hundred million and not a few hundred thousand.

One of the databases in dataset 2, the msc pictures is mainly used to generate data
with a high amount of equality by taking more than 40,000 pictures of the same back-
ground. To demonstrate how equal the pictures are, an average color is generated. The
intention with this database is not to create equal data but more to generate pictures
that ”look” equal to the human eye.

The largest data-set is dataset 1, the msc database with table records from almost
13,000 common videos of di↵erent format. The main purpose of this database is to create
an extremely high number of records. One of the tables contains more than 15 billion
records. Such large volumes of data are also an indicator of the challenges of big-data.

4.3 Entropy bias

With entropy bias we here speak about categorizing the amount of entropy. We will
use the terms low, medium and high entropy. The challenge is to define these borders.
We already know that entropy of 0 is low and 1 is high, and medium is not simply > 0
and < 1. To determine the bias of entropy, the testing was based on large amounts of
database records from pictures, videos and a real case. By performing search for hash
collisions in relation to the amount of entropy it is possible to observe the variation of
entropy in large scale datasets.

By comparing entropy in di↵erent block sizes with same data as source is also a
factor to decide the optimal amount of entropy used as a quality criteria in the block
hashing methodology.

4.4 Optimal block size

To define an optimal block size, di↵erent block sizes were tested in databases with huge
amounts of SHA256 hashes to determine collision frequency in conjunction with the time
aspect of performing such searches. To determine an optimal block size, entropy is also
part of the evaluation.

33 of 140 August 1, 2016

Blockhashing as a forensic method

Several factors involve the optimal block size factor. One factor is the file-system en-
vironment another, the impact block-size has on entropy and finally the data processing
e�ciency.

Several block sizes are used but all sizes are a multiple of 512 bytes (512, 1,024, 2,048,
4,096, 8,192 and 16,384 bytes blocks)

4.5 Determine bias for coinciding and coherency of blocks

The block size and entropy parameters to use as qualification for the block hashing
methodology are not enough to base the method on. Quantifying blocks is also an im-
portant factor to use to make the methodology robust enough.

As an example, just finding one single block of a certain size with a certain level of
entropy is not enough to determine the presence of a previously complete data object in
the target data.

The number of coinciding blocks is a crucial element in proofing the methodology.

In addition to the number of coinciding blocks, these blocks should have some coher-
ence. An example of these two elements (coinciding blocks and coherence) is two blocks
from a reference data object discovered in the target object. If the two blocks are found
sequential, it could be a more certain identification than two blocks found spread in the
target data.

To determine these factors, the dataset from a real case is used to show di↵erent
grades of coincidence compared to coherence. This part of the test is done by using a
SQL query between block hash records of target data and source data and determine
coinciding blocks. This is the basic principle behind block hashing but also shows several
examples using graphical block maps from the two data sets.

34 of 140 August 1, 2016

Blockhashing as a forensic method

Part III

Evaluation

35 of 140 August 1, 2016

Blockhashing as a forensic method

5
Experimental setup

This chapter describes the methods used to create the experiments.

5.1 Hardware

The processing of the datasets was performed using two machines, an Apple Macbook
Pro 15” and a self build standalone machine with the following specifications.

Component Description

Mainboard Supermicro X9DAi
CPU 2 x Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz (6-core)
Raid controller LSI MegaRAID SAS 9271-8i
Raid #1 Raid-0, 6 TB (3 * 2 TB drives), SAS
Raid #2 Raid-5, 8 TB (5 * 2 TB drives), SAS
Memory Physical 80 GB RAM
System disk OCZ 10xx SCSI Controller, PCI-X 8 card, 256 GB, SSD
Swap disk CRUCIAL CT256M225, 256 GB, SSD
OS Windows 8.1 x64

Table 5.1: Setup of the Supermicro X9DAi computer

36 of 140 August 1, 2016

Blockhashing as a forensic method

Component Description

Machine basic Apple Macbook Pro 15 inch, Retina, mid 2014
CPU 2.8 GHz Intel Core i7
Memory 16 GB
Disk Apple SSD drive, 1 TB
OS OS X 10.10 (Yosemite)

Table 5.2: Setup of the Macbook Pro

5.2 Software

One of the goals for this project, was using entirely free and open source tools to generate
of the datasets and to perform the database search. Later in the project, the use use
of MySQL in community version was not su�cient power to perform database queries
on the largest datasets. In the final months of the project, we switch from MySQL to
Microsoft SQL 2016.

Type Name and version

Database MySQL 5.6.22 for Windows and Mac OS X
Database Microsoft SQL 2016 Enterprise x64
Database mgmt MySQL Workbench

Microsoft SQL Server Management Studio
Programming Python 2.7.9 (Mac OS X)

Python 2.7.11 (Windows)

Table 5.3: Software

5.3 Challenges in hardware/software and datasets

The three scenarios used in this project contains a huge amount of database data and
the total number of record in the tree databases is nearly 17 billion records occupying
nearly 2 TB of space.

The standalone Supermicro machine, Table 5.1 with 12 cores and 80 GB RAM is
su�cient, but the MySQL 5.6.22 is the community version of the database and only
support query on a single core and thread.

Some of the queries run several days, weeks and months to finish the processing using
the MySQL database engine.

37 of 140 August 1, 2016

Blockhashing as a forensic method

6
Experimental Sources

The research was based on large datasets created from four di↵erent test objects. The
datasets are created with some fundamental values used to perform research against, the
entropy and the hash algorithm, SHA256.

6.1 Datasets

Dataset Database Information

1 msc Database with block-hashes and other data from more than 12,000
videos of di↵erent format.

2 msc pictures Database with block-hashes and other data from more than 40,000
pictures of the same object.

3 msc case Database with hashes and other data from reference data the
police claim the suspect have downloaded using P2P and block-
hashes of the storage seized from the suspect. This is data from
a real criminal case.

4 Misc Miscellaneous datasets to test the probability of collisions in dif-
ferent type of data

Table 6.1: Overview of databases and their purpose

38 of 140 August 1, 2016

Blockhashing as a forensic method

The purpose of dataset 1 is to provide large volume of hashed blocks to determine
the probability of collisions when using di↵erent block sizes. This dataset is also used to
determine an optimal amount of entropy to use when measuring the robustness of the
forensic method.

The main purpose of dataset 2, is to provide a large amount of hashed blocks of dif-
ferent sizes from collection of data objects that visually identical. The block hashes are
of di↵erent sizes and each picture remains in two states. The two states are the original
lossy compressed JPG image and a simple uncompressed BMP-2 format. The last one is
created by converting the JPG file to BMP using Python with the PIL extension. This
dataset is also used to determine an optimal amount of entropy and optimal block-size
to use when measuring the robustness of the forensic method.

Dataset 3 is from a real case where we have hashed and measured the entropy of
blocks with di↵erent sizes. The data is two parts. One part is the reference data we
would like to use to compare blocks from the suspects storage, the unallocated area.
The intention of this dataset is to test the block-hashing on a real case and also to use
it as a prototype to measure optimal block size and amount of entropy.

Dataset 4 is data from di↵erent file types. This dataset is mainly for testing entropy
variation on di↵erent block-sizes.

By combining findings from the datasets, it should be feasible to determine the
robustness of block-hashing as a forensic method by determining an optimal block-size,
optimal amount of entropy and the amount of common blocks between a reference file
and a search target.

6.1.1 The creation of the datasets

All database tables are created by importing tab or comma separated files with con-
tent generated from di↵erent Python scripts. A typical SQL script to import comma
separated text into a table in a database is shown in listing A.12. The tab or comma
separated text-file with the database records was created using Python scripts listed in
A.1.

Initially, the Python scripts was set up to directly write to the MySQL database
through the MySQL Python connector, but this was much slower than first write the
data to CSV/TSV file and the use of the command similar to the one showed in A.12.
The use of the SQL command ”LOAD DATA INFILE” has an average import speed up
to 250,000 records/second and the average speed parsing the dataset to CSV/TSV files
from Python was around 50,000 records/second.

39 of 140 August 1, 2016

Blockhashing as a forensic method

Initially, the MySQL database was set up to use the InnoDB database engine, but the
huge amount of data records gives problems regarding the bu↵er pool of the transaction
files and during the write process, the table fill gets slower and slower. When switched
to MyISAM database engine (which is not transaction-based), the speed was higher and
the problems with the bu↵er pool were solved. Later in the project, we switched to
Microsoft SQL 2016 Enterprise database to have better performance against the largest
data-sets. Some tests was not feasible to perform within a reasonable period of time.
This is described more later in this part of the project.

6.1.2 Details about the datasets

In the following tables (6.3, 6.4 and 6.5), we have listed the statistics about the di↵erent
databases in use. The three datasets are described briefly in the following sections. The
three datasets contain of 20,781,267,668 records and occupies 2 TiB of storage when
indexes are included.

6.1.2.1 Dataset 1, Database:msc

This is the largest test set containing data from 12,289 videos. Initially, this dataset
contains some more videos, but with some duplicates detected by the MD5 checksum.
The Python script in A.1.4 removes duplicates from the file name table.

The number of di↵erent video files involved in this dataset is specified in Table 6.2

File type Number of files
avi 7,506
mkv 3,582
mpg 418
mp4 396
wmv 45
vob 246
Other types 96
Sum 12,289

Table 6.2: Number of di↵erent video types to block-hash

The Python script in A.1.2 was used to generate the block hashes from the videos.
There was generated block-hashes of 512 and 4,096 bytes blocks.

40 of 140 August 1, 2016

Blockhashing as a forensic method

Some data-objects in this dataset has a file size not aligned to 512 and/or 4,096
bytes. These files are referred to in the filenames512 and filenames4096 respectively.
The last block on file which has no alignment to the block sizes set has a values of 1 in
the ”remnant” field.

Check the Table 6.3 with details about the number of records in each table.

Table Engine Avg row Rows Created
length in bytes time

blockhash4096 MyISAM 95 1,950,241,553 15.01.16 00:17
blockhash512 MyISAM 95 15,601,968,046 20.02.15 09:09
filenames4096 MyISAM 7 12,289 16.01.16 21:10
filenames512 MyISAM 7 12,289 16.01.16 21:11
hashdatabase MyISAM 145 12,289 20.02.15 09:09

SUM rows 17 552 246 466

Table 6.3: Database: msc

41 of 140 August 1, 2016

Blockhashing as a forensic method

6.1.2.2 Dataset 2, Database:msc pictures

This dataset is based on pictures taken with a GoPro Hero 3+ Black edition camera in
time-lapse mode with 2 pictures/second. The object for the pictures was some standard
white paper sheets pinned to a wall in a room with normal lightning. The camera was
fitted with a Sandisk 64 GB memory card and the GoPro was put on a stand to take
steady pictures automatically of the white sheets until the memorycard was full and the
result was 40,493 pictures. The size of each picture was from 1,373,383 to 1,406,842
bytes and the pictures has the pixelsize (w/h) of 2,560 * 1,920. The pictures were taken
between 12. Feb 2015 12:00:04 and 19:37:17 which is 7 h 37 m 13s. The picture format
was JPG.

A database, msc pictures was created with file-names and di↵erent block-hashes in
the range of 512, 1024, 2048, 4096 and 8192 bytes. Number of records in the di↵erent
tables in the msc pictures is shown in Table 6.4.

Engine Avg row Rows Created
Table length in bytes time

hashdatabase MyISAM 136 40,493 20.01.16 12:17
blockhash512 MyISAM 95 109,749 164 17.02.15 14:35
filenames512 MyISAM 7 40,493 19.01.16 14:44
blockhash1024 MyISAM 95 54,864 493 20.01.16 12:00
filenames1024 MyISAM 7 40,493 20.01.16 12:00
blockhash2048 MyISAM 95 27,422 138 20.01.16 12:00
filenames2048 MyISAM 7 40,493 20.01.16 12:00
blockhash4096 MyISAM 95 13,700 750 17.02.15 14:35
filenames4096 MyISAM 7 40,493 19.01.16 14:44
blockhash8192 MyISAM 95 6,839 546 20.01.16 12:00
filenames8192 MyISAM 7 40,493 20.01.16 12:00
blockhash512 raw MyISAM 103 1,166,198,400 13.02.16 11:33
blockhash1024 raw MyISAM 103 583,099,200 13.02.16 11:54
blockhash2048 raw MyISAM 103 291,549,600 13.02.16 11:54
blockhash4096 raw MyISAM 103 145,774,800 13.02.16 11:53
blockhash8192 raw InnoDB 128 65,518,105 09.02.16 15:16

Sum rows 2,464,959,154

Table 6.4: Database: msc pictures

42 of 140 August 1, 2016

Blockhashing as a forensic method

6.1.2.3 Dataset 3, Database:msc case

This dataset is based on a real case with a seized disk from the suspect‘s machine and
some videos the National Investigation Authority of Norway claimed the suspect down-
loaded at a certain point of time. To extract all unallocated blocks from the NTFS
volume on the suspects disk the Python script A.1.11 is used. The result is a raw data
image file. The same data is generated with the Sleuthkit blkls application. Both give
the same result. The raw image of the unallocated clusters is the source to generate
table records using di↵erent block sizes (512, 1,024, 2,048 and 4,096 bytes blocks). This
dataset also contains block-hash data from the reference data that consists of 26 di↵erent
videos. block-hash data from the 26 videos are also generated with the same block size
as the target data.

Table Engine Avg row Rows Created
length in bytes time

blockhash4096 MyISAM 91 36,330,752 20.02.15 09:03
blockhash512 MyISAM 91 290,646,016 20.02.15 09:03
blockhash unallocated1024 MyISAM 91 117,273,276 29.01.16 20:56
blockhash unallocated2048 MyISAM 91 58,636,638 29.01.16 20:56
blockhash unallocated4096 MyISAM 91 29,318,319 06.02.16 16:11
blockhash unallocated512 InnoDB 111 216,596,681 07.02.16 16:24
reference blockhash1024 MyISAM 95 3,623,051 11.02.16 18:32
reference blockhash2048 MyISAM 95 1,811,521 11.02.16 18:32
reference blockhash4096 MyISAM 95 905,755 06.02.16 16:18
reference blockhash512 MyISAM 95 7,246,112 06.02.16 19:42
reference hashdatabase MyISAM 150 26 11.02.16 18:23
caselookup4096 MyISAM 91 18,877 09.02.16 18:34
caselookup512 MyISAM 91 163,323 08.02.16 17:48
reference hashdatabase MyISAM 152 26 11.02.16 15:11
unallocated collisions4096 MyISAM 83 1,491,675 12.02.16 17:05
unallocated collisions512 MyISAM 83 NIL NIL

SUM rows 764,062,048

Table 6.5: Database: msc case

43 of 140 August 1, 2016

Blockhashing as a forensic method

6.1.2.4 Dataset 4, miscellaneous data sets

Database Table Engine Avg row Rows Created
length in bytes time

msc text blockhash all MyISAM 95 1,040,731 23.02.16 12:20:59
msc veracrypt blockhash all MyISAM 95 103,219,200 23.02.16 10:55:52

Table 6.6: Miscellaneous datasets

44 of 140 August 1, 2016

Blockhashing as a forensic method

7
Description of Results

This chapter describes the outcomes of applying the approach to solve the research
problems formulated in Chapter 3.

Here we will describe the results of the di↵erent experiments and relate them to
proposed research questions.

7.1 Results from dataset 1, msc database

The main purpose of this dataset is to test the probability of hash collisions using large
number of records. This data-set is also used to determine average entropy related to
di↵erent block sizes.

The average entropy for the two tables is shown in Table 7.1. The entropy has the
same curvature as tested in the other datasets (msc pictures and msc case) but only
tested on block-size 512 and 4,096 bytes.

Block size Entropy

512 0.939041
4096 0.986328

Table 7.1: Average entropy in vidoes

45 of 140 August 1, 2016

Blockhashing as a forensic method

The average entropy in dataset 1 is shown in Table 7.1. The entropy on 4,096 byte
blocks are significantly higher than in 512 byte blocks. Since we only have tested two
block-sizes on this dataset, the graph is omitted and would not have shown the correct
picture on how the entropy increases as the block-size increase. The main goal of this
dataset was to detect hash collision and not entropy.

Collision detection was initially done using MySQL on the 4 KiB block-size. The
processing was aborted after 87 days and the same dataset was created in a Microsoft
SQL Enterprise 2016 database engine. The collision results are shown in Table 7.2.

Block- Block Block Hash Hash Proc Entropy
size Collisions Collisions Collisions Collision time Avg Max Min

% % min

512 59,473,671 0.375 7,220,501 4.6⇥ 10�5 660 0.907 0.968 0.000
4,096 4,899,001 0.250 623,504 3.2⇥ 10�5 44 0.936 0.996 0.000

Table 7.2: Detection of collisions in video file blocks in database msc

Table 7.2 shows the statistics on the hash collisions in the msc dataset from 12,289
videos of di↵erent type. We distinguish between block and hash collisions. The block-
collisions are total number of blocks involved in collisions which has a minimum of two
blocks per hash collision. The hash-collisions are the number of SHA256 hashes we
found collisions on. From the numbers in this table we notice that the following rela-
tion. block�collisions

hash�collisions ⇡ 8. This means the average hash collision involves an average of
about 8 blocks.

From the Table 7.2, we notice that di↵erence in number of collision blocks in 4,096
byte blocks are severely lower than the 512 byte blocks. The di↵erence is ⇡ 50%.

In the largest database table has 15,549,714,874 unique SHA256 hash values out of
15,601,968,046.

The di↵erence in number of hash collisions are severe. The collision probability in
this data-set between Blockssize4096

Blocksize512 is 1
700 .

Collisions in video files, specially MP4, AVI and other are normal due to the archi-
tecture of these files. As an example, AVI files [26] uses areas in the file for indexes, sub-
indexes and super-indexes. In addition, it’s not uncommon to find areas with ”garbage”
to set a delay in the video.

46 of 140 August 1, 2016

Blockhashing as a forensic method

In the msc dataset from video files with 4,096 byte blocks, there are several examples
of such content in the video. In one file with a size of 740 MB, large areas of di↵erent
indexes was found. One particular block was repeated 240 times and the content appears
to be indexes of some kind.

In the Matroska (MKV file name su�x) we also find number of repeating blocks.

Common to these repeating pattern-filled-blocks in this type of files are the amount
of entropy. Several tests on these repeating patterns which give an entropy between 0.2
to 0.4 with some exceptions in some of the AVI video files.

Entropy generally are very high on video files. The average entropy for the whole
msc data set of 4,096 byte block size is 0.9362. If we exclude all entropy below or equal
to 0.5000 we end up having an average of 0.9888.

Further searches in the database show only 9,217 colliding blocks with entropy > 0.9
with more than 2 hits. About 1 million collisions in blocks with entropy > 0.9 with only
two hits.

Many of the videos in the collection about 13,000 files was from TV-series and other
series. Common to many of the TV-series are the use of introduction vignettes with
both sound and picture. If these objects are block aligned in the file, it will be normal
to have several hits on these vignettes.

After working with child abuse cases many years, it is not uncommon to have such
vignettes in this type of data to ”credit” the author.

As shown in Table 7.2, we had a total of 4.8 million collisions. 1.3 million of these
are blocks with an entropy of 0.0. With a database of nearly 2 billion records, this is
only a total collision of 0.24%. If we exclude the blocks with zero entropy, we ends up
with a collision of 0.125%.

The column ”proc time” is the SQL processing time to perform the comparison using
Microsoft SQL.

47 of 140 August 1, 2016

Blockhashing as a forensic method

7.2 Results from dataset 2, msc pictures database

The main purpose of this dataset is to test the probability of collisions in data made
to look equal to the human eye. This is more than 40,000 pictures taken with a steady
mounted camera taking time lapse pictures. The photo background is static and the
pictures are taken inside a closed room with minimal impact from external activity. The
purpose was not to make the pictures technical absolute equal, but equal to the human
eye. The picture data format is JPG which is a lossy-compressed picture format. The
same pictures was also converted to BMP-2 picture format to perform similar searches
on. The first calculations on this dataset is to proof the equality of the pictures. This is
measured by the comparing colours of the dataset to show the relative low variation in
the visual content.

The average entropy for 512 byte block-hashes was 0.9413 and 0.9416 for blocks with
entropy > 0. There were 40493 records with entropy 0. That were one per file, and
all was on block 4 (o↵set 1,536-2,047). This block on all pictures contains a repeating
pattern of hexadecimal 0x00 and was part of the meta-data in the picture. Meta-data
in JPG pictures are data that defines the picture set-up with picture size, color depth,
white balance, number of colors, EXIF1 data and much more. On a typical picture taken
with a standard digital camera, the meta-data often occupies the first two-four KB.

The average color per picture and average color between all pictures was also cal-
culated. The processing of average color was done using Python and the PIL package.
The script is in appendix A.1 and is the script A.1.5.

The pictures was in RGB (Red, Green, Blue) color mode and the Red was between
132-137, Green between 120-124 and Blue between 114-120.

The average color in RGB is (134,122,117) is decimal the color code 878182410, hex-
adecimal 867A7516.

The average color is visualized in the graph, shown in Figure 7.1

Figure 7.1 shows the decimal color number (Y-axis) on each picture (X-axis in the
picture number). All these calculations on the pictures, were made to show how little
each picture di↵ers from each other. The only impact on the pictures, was the amount
of light that came through a small window just below the roof. Otherwise, there was
no activity in the room and there was no tra�c too. There is a small drop near picture
15,000 and has probably to do with less light from the small window near the roof. The
small variation from low, average to highest color number is almost not visible to the
human eye. The di↵erence is illustrated in Figure 7.2. There is tree coloured rectangles
in the figure and each represent the the colour variations (high, average and minimum)
in this dataset.

1
http://www.media.mit.edu/pia/Research/deepview/exif.html

48 of 140 August 1, 2016

Blockhashing as a forensic method

Color

Picture number

C
o

lo
r

D
e

c
im

a
l

fr
o

m
 R

G
B

Figure 7.1: Average color spread.

Highest 8944503 (136,123,119)

Average 8781824(134,122,117)

Lowest 8681843 (132,121,115)

Figure 7.2: Visualisation of the color spread.

After demonstrating the equality of the pictures in the dataset, we perform a SQL
query in the dataset to detect block collisions in the dataset. The data we search inside,
is the tables with block-hash data (SHA256 hashes and entropy) per block-size (512,
1,024, 2,048, 4,096 and 8,192 byes). We both search in the blocks from the JPG format
of the files and the BMP-2 format of the same after been converted. The SQL query in
code A.13 was used to detect duplicate SHA256 in a table.
49 of 140 August 1, 2016

Blockhashing as a forensic method

Collisions in the database of .jpg picture hashes, msc pictures, Table 7.3 and 7.4.

Table Blocks w/ Search time Entropy
block-size Collisions in minutes Avg Max Min

blockhash512 162,292 260 0.427590144 0.826447493 0.0000
blockhash1024 40,405 120 0.312801256 0.313755647 0.198011959
blockhash2048 0 49 · · ·
blockhash4096 0 9 · · ·
blockhash8192 0 2 · · ·

Table 7.3: Detection of collisions in JPG file blocks in database msc pictures.

Table 7.3 shows the collisions in the JPG pictures in the dataset. The left most
column is the table name with block-size. Table blockhash512 is the blocks of 512 bytes.
The next column is the number of blocks with collisions. The three last columns is the
average, maximum and minimum entropy of the blocks with collisions. On the three last
rows, there was not detected any collisions (block-size 2,048, 4,096 and 8,192). Entropy
given with a ”dot” indicates no data.

Table Collisions Search time Entropy
block-size in minutes Avg Max Min

blockhash512 raw 0 13,212 · · ·
blockhash1024 raw 0 6,393 · · ·
blockhash2048 raw 0 3,264 · · ·
blockhash4096 raw 0 524 · · ·
blockhash8192 raw 0 53 · · ·

Table 7.4: Detection of collisions in BMP file blocks in database msc pictures.

50 of 140 August 1, 2016

Blockhashing as a forensic method

Table 7.4 shows collisions on blocks from the same pictures converted to BMP-2.
The query against the block-hashes give no collisions in any of the block-sizes.

We have also calculated the average entropy on both JPG and BMP-2 file blocks of
di↵erent sizes. These values are shown both in a table and as a graphic plot. Table 7.5
covers both the JPG and BMP-2 pictures. Fig 7.3 are from the calculations on JPG
pictures and fig. 7.4

block- Avg entropy Avg entropy
size JPG BMP-2

512 0.9413 0.5244
1024 0.9684 0.5520
2048 0.9810 0.5893
4096 0.9871 0.6318
8192 0.9901 0.6623
AVG 0.9736 0.5920

Table 7.5: Average entropy in jpg pictures on block-size.

E
n

tr
o

p
y

Block size in bytes

Figure 7.3: Average entropy in JPG pictures per block-size.

51 of 140 August 1, 2016

Blockhashing as a forensic method

E
n

tr
o

p
y

Block size in bytes

Figure 7.4: Average entropy in BMP-2 pictures per block-size.

52 of 140 August 1, 2016

Blockhashing as a forensic method

7.3 Results from dataset 3, msc case database

Table 7.6 provides information about reference data delivered by KRIPOS (National
Criminal Investigation Service, Norway) from an active case. This contains 26 objects
showing sexual abuse of children. KRIPOS claim the suspect downloaded these videos
from a P2P network at a particular time. None of these files were found as active files
on the suspect’s storage. The files used as reference data i real child abuse videos and
the file-names in the table are anonymized.

File Filename File
number Name size

1 [–anonymized–].avi 537,726,976
2 [–anonymized–].avi 2 904,678
3 [–anonymized–].mpeg 25,159,442
4 [–anonymized–].mpeg 401,113,088
5 [–anonymized–].avi 329,743,512
6 [–anonymized–].mpeg 20,301,246
7 [–anonymized–].mpeg 34,336,776
8 [–anonymized–].avi 77,248,512
9 [–anonymized–].avi 230,114,636
10 [–anonymized–].avi 60,688,896
11 [–anonymized–].mpeg 134,029,577
12 [–anonymized–].avi 99,159,302
13 [–anonymized–].avi 75,805,306
14 [–anonymized–].avi 356,837,650
15 [–anonymized–].mpeg 38,496,260
16 [–anonymized–].avi 47,024,784
17 [–anonymized–].avi 47,024,784
18 [–anonymized–].avi 157,095,936
19 [–anonymized–].mpeg 16,384,000
20 [–anonymized–].mpeg 52,162,560
21 [–anonymized–].mpeg 438,836,873
22 [–anonymized–].mpeg 45,620,923
23 [–anonymized–].avi 35,205,120
24 [–anonymized–].mpeg 151,721,296
25 [–anonymized–].avi 117,831,384
26 [–anonymized–].mpeg 177,439,724

SUM 3,710,013,241

Table 7.6: The table of reference files from KRIPOS.

53 of 140 August 1, 2016

Blockhashing as a forensic method

7.3.1 Detecting hash collisions in unallocated blocks

Database table SHA256 Non zero Search Note
collisions blocks time

Involved
in min

blockhash unallocated512 11,791,229 50,544,798 817 8,953,059 of the blocks involved is from the
block with SHA256: 076a27c79e5ace2a3d47f9
dd2e83e4↵6ea8872b3c2218f66c92b89b55f36560 and
entropy of 0.0. This is blocks with only 0x00 values

blockhash unallocated1024 · · · ·
blockhash unallocated2048 2,908,065 12,069,348 106 1,963,916 of the blocks involved is from the

block with SHA256: e5a00aa9991ac8a5ee3109844
d84a55583bd20572ad3↵cd42792f3c36b183ad and en-
tropy of 0.0. This is blocks with only 0x00 values

blockhash unallocated4096 1,491,675 5,696,144 53 823,877 of the blocks involved is from the
blocks with SHA256: ad7facb2586fc6e966c004d7
d1d16b024f5805↵7cb47c7a85dabd8b48892ca7 and
the entropy is 0.0. This is blocks with only 0x00
values

Table 7.7: Collisions in blockhash unallocatedNNN where NNN is the block-size.

In Table 7.7 the column ”SHA256 collisions” is the number of SHA256 collisions in
the table. The column ”Non zero blocks involved” is the sum of SHA256 collisions per
row.

Detecting a large number of collisions in unallocated areas is common, in particular
with disks not run for a very long time. Such disks will have large areas of blocks with
only zero-values, 0x00.

7.3.2 Detecting equal blocks in reference data and unallocated areas

In this section we will perform a lookup of block-hashes from reference files into the
block-hashes from unallocated areas. This is a practical example of the block-hashing
technique in general. The search is based on blocks with common SHA256 values. The
result of the query will be a table of records from the two data areas, and contains the
common data in addition to where the common blocks are found in both data areas. As
an example we could have a row with information about where in the reference material
the hash remain in, where in the unallocated areas the same hash/hashes remain in
and the common data like the SHA2556 and the amount of entropy. One hit from the
reference data could have several hits from the unallocated areas.

The di↵erent tables in the msc case database are shown in Table 6.5. In Table A.14
we have number of hits from the reference table in the table of block-hashes of the un-
allocated area of the suspects storage. One table per blocksize (512 and 4 096 byte
blocks). This is shown in the two tables, Table 7.9 and 7.10. The File number refers to
Table 7.6.

54 of 140 August 1, 2016

Blockhashing as a forensic method

A CSV file of mutual SHA256 hashes from the reference material and the unallo-
cated area of the suspects storage was generated using the SQL query shown in code
A.14. This CSV file was used to create new tables containing only hits between refer-
ence data and the unallocated clusters on the suspects storage. This new table are based
on query between the two databases (reference data and unallocated areas). We then
have a single table with relatively small number of records to perform further searches in.

The cross search performed using the Python code in A.14 was between the two ta-
bles which give us the result in the third table shown in Table 7.8. The table shows the
number of common blocks in the new table with common hits. With the newly created
table, we just have a limited number of records to perform further searches in. The SQL
query example are for 512 byte block tables.

Table in msc case Records

1 reference blockhash512 7,246,112
2 blockhash unallocated512 234,546,552
3 caselookup512 163,323
4 reference blockhash4096 905,755
5 blockhash unallocated4096 29,318,319
6 caselookup4096 18,877

Table 7.8: Tables in cross query between reference blocks and from unallocated clusters.

Table 7.8 have to major row sections. Row 1 to 3 for cross-searches between 512 byte
blocks. First row is reference data, next is same sized blocks from unallocated areas and
the third is the table with common blocks from the two previous. To evaluate number
of hits per file, the only table involved is the caselookup[blocksize] (like caselookup512)

By using the SQL query in appendix A.15 we get the following numbers of hits be-
tween the reference data and the unallocated clusters per reference file, shown in Table
7.9 and 7.10. The ”File numbers” is the one listed in 7.6.

55 of 140 August 1, 2016

Blockhashing as a forensic method

File File Hits Percent
number Size hits

13 75 805 306 57,508 38.84 %
9 230 114 636 43,274 9.63 %
1 537 726 976 30,729 2.93 %

20 52 162 560 7,631 7.49 %
24 151 721 296 4,506 1.52 %
3 25 159 442 3,926 7.99 %
5 329 743 512 3,675 0.57 %

11 134 029 577 3,374 1.29 %
16 47 024 784 2,578 2.81 %
17 47 024 784 2,578 2.81 %
14 356 837 650 1,999 0.29 %
15 38 496 260 585 0.78 %
25 117 831 384 488 0.21 %
8 77 248 512 264 0.17 %
6 20 301 246 120 0.30 %

10 60 688 896 81 0.07 %
26 177 439 724 4 0.00 %
23 35 205 120 2 0.00 %
2 2 904 678 1 0.02 %

SUM 163,323

Table 7.9: Number of hits per reference file in the suspect,s unallocated area. Sorted by hits and block-size of
512 bytes.

7.3.3 Detecting hash collision in blocks from unallocated areas

Another testing was to determine SHA256 collisions in the tables blockhash unallocated512
and blockhash unallocated4096. This is blocks from unallocated areas on the suspects
system volume in the case data.

For the blockhash unallocated4096, 1,491,675 collisions was detected. By exporting
the performed query and creating a separate table of these hits and performing a cross
query against the caselookup4096 table, 524 collisions was detected.

There were 8 collisions for file 3, 2 for file 20, 2 for file 26 and 512 for file 13. For file
20 and 26 the entropy was 0.0 while file 3 and 13 generally have high entropy.

56 of 140 August 1, 2016

Blockhashing as a forensic method

Filenum Size Hits Percent

13 75 805 306 7,191 38,9 %
9 230 114 636 5,406 9,6 %
1 537 726 976 3,824 2,9 %
24 151 721 296 564 1,5 %
3 25 159 442 516 8,4 %
11 134 029 577 422 1,3 %
16 47 024 784 317 2,8 %
17 47 024 784 317 2,8 %
20 52 162 560 236 1,9 %
15 38 496 260 34 0,4 %
8 77 248 512 33 0,2 %
6 20 301 246 15 0,3 %
26 177 439 724 2 0,0 %

SUM 18,877

Table 7.10: Number of hits per reference file in the suspects unallocated area. Sorted by hits and block-size of 4
096 bytes.

For file 13 the collisions were two contiguous areas from the reference file, block
7488-7615 (128 blocks / 512 KiB) and 8000-8127 (128 blocks / 512 KiB). A normal as-
sumption of the collisions for file 13 is that the actual reference file could have remained
on two di↵erent locations of the suspect’s storage at a certain time. The mutual blocks,
entropy spans from 0.65 to 0.99 and is from medium to very high entropy.

For file 3 the collisions were a contiguous chain of blocks in the reference file. Block
252-255 and the same blocks were found contiguously in the unallocated area in blocks
28,574,892 - 28,574,895 with entropy for all of them at 0.986.

7.3.4 Analysing hits between reference data and unallocated area

Further, to visualize the hits between blocks in the reference material and the blocks
in unallocated clusters on suspect’s storage, a block map of some of the findings is pre-
sented. There are two types of block map. One that shows what blocks in the reference
data per file is found in unallocated. This block map shows each block starting from
0 to the last block plotted by corresponding pixel in the block map. Each pixel is also
coloured to visualize the entropy of that block.

The other type of block map shows where in the unallocated area of the suspect’s
storage there is found identical blocks from the reference material.

57 of 140 August 1, 2016

Blockhashing as a forensic method

7.3.4.1 Reference data files, 4,096 byte blocks

In this section we look into the 4,096 bytes common blocks from the reference data files.
For each file we find common blocks, we have created a block map to illustrate where in
the reference data we have common blocks from. The file numbers we look into is the
files 1,9,13,20 and 24, 4,096 byte block size. The file numbers is the same as referred
to in Table 7.6. All the block maps are created diagrammatically using Python and
the content from the database records of common blocks between reference data and
unallocated areas.

The grey area, is blocks from the reference file that are not located in the unal-
located area of the suspect’s disk. Red pixels are blocks with high entropy (> 0.9)
that is found in the unallocated area. Yellow blocks are blocks with medium entropy
(0.5 entropy 0.9) and black pixels are blocks with low entropy (< 0.5).

Common blocks from file number 1

The block map in Figure 7.5 shows which blocks in the reference data for file 1 that
are located in the unallocated clusters from the suspect’s storage. File 1 is about 537
MB. The pixel in upper left corner is the first block of the reference file and the bottom
right is the last block from the same file. Each pixel represents a block from the file in
sequential order.

The block map shows that almost all blocks located between reference and unallo-
cated area have high entropy and 3,824 blocks are identified which is 2.0 % of the total
number of blocks the reference file occupy (see Table 7.6). We notice, many of the find-
ings are sequential areas of several hundreds of blocks, each of 4,096 bytes.

Common blocks from file number 9

The block map in Figure 7.6 shows much the same as Figure 7.5. This is a smaller
reference file (about 230 MB, less than halv of file 1) and there are 5.406 (9.0%) mutual
blocks in the reference file and unallocated area. As we can observe, all common blocks
have a high entropy. We also notice that the common blocks referred to from this file
are several large contiguous chains. Two of the chains are severe.

Common blocks from file number 13

The block map in Figure 7.7 shows a high amount of common blocks between the refer-
ence data and the unallocated clusters. in Table 7.6 this reference file is about 75 MB (
18,507 4 KiB blocks) and has 7,191 in common (38.0%).

58 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.5: Block map of reference object 1, block size 4096

Figure 7.6: Block map of reference object 9, block size 4096

Another observation here is the high amount of blocks (87% of the common blocks)
with medium entropy (yellow pixels) but also a relatively high number (12% of the
common blocks) of blocks with high entropy. From the block map we can identify more
than 4 major contiguous areas of common blocks.

59 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.7: Block map of reference object 13, block size 4096

Common blocks from file number 20

The block map in Figure 7.8 is a block map from file 20 from Table 7.6 of 52 MB. In
the unallocated area of suspects storage, there is 236 common blocks of 4 KiB which
represents about 1.8%. Most of the common blocks have either high or medium entropy.

Figure 7.8: Block map of reference object 20, block size 4096

Common blocks from file number 24

The block map in Figure 7.9 is a block map from file 24 from Table 7.6 of 151 MB. In
the unallocated area of suspects storage, there is 564 common blocks of 4 KiB which
represents about 1.5%. All common blocks except two have high entropy.

Figure 7.9: Block map of reference object 24, block size 4096

60 of 140 August 1, 2016

Blockhashing as a forensic method

7.3.4.2 Reference data files, 512 byte blocks

In this section we look into the 512 bytes common blocks from the reference data files.
For each file we find common blocks, we have created a block map to illustrate where
in the reference data we have common blocks from. The file numbers we look into is
the files 1,9,13,20 and 24, 4,096 byte block size. How the maps are created and the
explanation of colors and symbols are the same as in Section 7.3.4.1. All file numbers
refers to the file Table 7.6.

Common blocks from file number 1 . The block map in Figure 7.10 is from file 1
in the file Table 7.6. There are several contiguous areas of common blocks between the
reference file and unallocated clusters. The reference file is 537 MB and there are 30,729
common blocks. 99.0% of these common blocks have high entropy. The rest are just a
few blocks, mainly from the beginning of the file.

Common blocks from file number 9

The block map in Figure 7.11 is from file 9 in the file Table 7.6. There are several
contiguous areas of common blocks between the reference file and unallocated clusters.
The reference file is 230 MB and there are 43,274 common blocks. 99.0% of these common
blocks have high entropy. The blocks with low entropy are mainly from the beginning
of the file.

Common blocks from file number 13

The block map in Figure 7.12 is from file 13 in the file Table 7.6. There are several
contiguous areas of common blocks between the reference file and unallocated clusters.
The reference file is 75 MB and there are 57,508 common blocks. 87.0% of these common
blocks have medium entropy. There are also a significant number of blocks with high
entropy, 7,332 blocks. The blocks with low entropy are mainly from the beginning of
the file.

Common blocks from file number 20

The block map in Figure 7.13 is from file 20 in the file Table 7.6. There is just one large
contiguous area of common blocks between the reference file and unallocated clusters.
The rest of the hits are very small areas with just a few contiguous blocks. The reference
file is 52 MB and there are 7,631 common blocks.

The hits are spread throughout the file and the only large contiguous area has high
entropy.

61 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.10: Block map of reference object 1, block size 512

Common blocks from file number 24

The block map in Figure 7.14 is from file 24 in the file Table 7.6. There are two relatively
large contiguous areas of common blocks between the reference file and unallocated clus-
ters. The reference file is 151 MB and there are 4,506 common blocks.

The two common areas are mainly blocks with high entropy, about 99% of the com-
mon blocks.

62 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.11: Block map of reference object 9, block size 512

7.3.5 Connection between common blocks in unallocated areas and
reference files

In the previous sub-chapters we have looked into some of the reference files and what
blocks per file are found in unallocated area of suspect’s storage. The reference to file
number from reference files, in the file Table 7.6. In this section, we will visualize the
placement of these hits in the unallocated area per file. There is one block map per file.
Each map is from the first common block to the last common block. Blocks located in
unallocated areas are marked with a dashed green border on the major areas to increase
the visibility.
63 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.12: Block map of reference object 13, block size 512

The unallocated area from the suspect’s storage is not a contiguous area but a collec-
tion of single blocks and range of blocks. However, the unallocated blocks is in sequential
order as they are present on the storage.

64 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.13: Block map of reference object 20, block size 512

The first unallocated block is block 0. We are using 512 and 4,096 byte blocks. The
suspect’s storage make use of 4,096 byte blocks (clusters) in the NTFS file system. The
512 byte block hashes of the unallocated area spans from block 0 to 290,646,016 and in
4 KiB blocks, the block numbers span from 0 to 36,330,752

65 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.14: Block map of reference object 24, block size 512

On each block map from unallocated area, there is a legend at the bottom. The
value ”Range u.b” is the placement in the unallocated area using ”B-size” as the unit
for block-size. In maps not using 512 byte blocks, the ”Range u.b” is converted into
512 byte blocks numbering. This just to have a common method of numbering blocks
between maps related to the same file.

66 of 140 August 1, 2016

Blockhashing as a forensic method

The legend value ”Res.” is the amount of blocks per pixel (resolution) in the block
map. A value of 100 means each pixel is 100 blocks.

Most of the blocks from the reference file found in unallocated areas in the unallo-
cated map are highlighted with a green dashed line. Some small block areas are not
highlighted.

7.3.5.1 Common blocks in unallocated areas, 512 byte blocks

In this section we will look into the common blocks in unallocated areas for block size
512 bytes. The following section will do the same on 4,096 byte blocks.

Common blocks in unallocated areas from file number 1

The block map in Figure 7.15 show where the common blocks from file 1 remain in
the unallocated area. There are two large areas, block 14,158,688 - 14,702,855 (11,096
blocks and 232,312,061 - 234,531,071 (19,539 blocks). These two areas are not completely
contiguous but remain in the same area. Between those two areas, there are 94 blocks
in several small chunks.

Common blocks in unallocated areas from file number 9

The block map in Figure 7.16 shows where the common blocks from file 9 remains in the
unallocated area. There are several dominating range of blocks. Block range 42,639,576 -
43,279,239 (472 blocks), 68,347,745 - 68,347,751 (7 blocks) and 111,272,152 - 111,947,751
(42,785 blocks).

Common blocks in unallocated areas from file number 13

The block map in Figure 7.17 shows where the common blocks from file 13 remains in
the unallocated area. There is one large range of blocks, 104,656,944-121,028,583 (56,820
blocks). This is the marked area a little above the middle of the block map. In addition,
there are several minor areas of common blocks, 20,744,256 - 22,125,063 (200 blocks),
35,786,376 - 37,355,863 (232 blocks), 66,695,664-66,899,055 (128 blocks), 232,311,280-
232,761,487 (128 blocks).

67 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.15: Block map of placement in unallocated areas object 1, block size 512

Common blocks in unallocated areas from file number 20

The block map in Figure 7.18 shows where the common blocks from file 20 remains
in the unallocated area. This file has just a few minor block areas in the unallocated
area. Block 56,992,508 (The file hader block), 80,273,788 and 81,942,750 (5 blocks),
block 93,220,055, 111,064,319 - 120,643,116 (7 blocks), 166,073,928 - 166,075,775 (1,742
blocks), block 198,456,951, 211,586,841 - 211,590,507 (495 blocks) and 232,661,984 -
232,661,988 (2 blocks).

68 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.16: Block map of placement in unallocated areas object 9, block size 512

Common blocks in unallocated areas from file number 24

The block map in Figure 7.19 show where the common blocks from file 24 remains in
the unallocated area. This file has two block areas in the unallocated area. Block areas
59,397,272 - 59,401,095 (3,821 blocks), 105,930,280 - 105930967 (685 blocks).

69 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.17: Block map of placement in unallocated areas object 13, block size 512

7.3.5.2 Common blocks in unallocated areas, 4,096 byte blocks

In this section we will look into the common blocks in unallocated areas for block size
4,096 bytes.

70 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.18: Block map of placement in unallocated areas object 20, block size 512

Common blocks in unallocated areas from file number 1

The block map in Figure 7.20 shows where the common blocks from file 1 remain in the
unallocated area.

There are three areas of blocks, block 1,769,836 - 1,772,075 (256 blocks), 1,827,969 -
1,837,856 (1,131 blocks), 29,081,520 - 29,316,383 (2,437 blocks). These three areas are
not completely contiguous but remain in the same area.

71 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.19: Block map of placement in unallocated areas object 24, block size 512

Common blocks in unallocated areas from file number 9

The block map in Figure 7.21 shows where the common blocks from file 9 remain in the
unallocated area.

72 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.20: Block map of placement in unallocated areas object 1, block size 4096

There are two areas of blocks, block 5,329,947 - 5,409,904 (59 blocks), 13,909,019 -
13,993,468 (5,347 blocks). These areas are not completely contiguous but remain in the
same area.

Common blocks in unallocated areas from file number 13

The block map in Figure 7.22 shows where the common blocks from file 13 remain in
the unallocated area.

There are five areas of blocks, block 2,593,032 - 2,765,632 (25 blocks), 4,473,297 -
4,669,482 (29 blocks), 8,336,958 - 8,362,381 (16 blocks), 13,082,118 - 15,128,572 (7,105
blocks) and 29,038,910 - 29,095,185 (16 blocks). These areas are not completely con-
tiguous but remain in the same area.

73 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.21: Block map of placement in unallocated areas object 9, block size 4096

Figure 7.22: Block map of placement in unallocated areas object 13, block size 4096

74 of 140 August 1, 2016

Blockhashing as a forensic method

Common blocks in unallocated areas from file number 20

The block map in Figure 7.23 shows where the common blocks from file 20 remain in
the unallocated area.

There are four areas of blocks, the single block 15,080,389, 20,759,241 - 20,759,471
(230 blocks), 26,448,387 - 26,448,590 (4 blocks)and block 29,082,748. Not all of these
areas are completely contiguous but remain in the same area.

Figure 7.23: Block map of placement in unallocated areas object 20, block size 4096

Common blocks in unallocated areas from file number 24

The block map in Figure 7.24 shows where the common blocks from file 24 remain in
the unallocated area.

There are two areas of blocks, 7,424,659 and 7,425,136 (478 blocks) and 13,241,285
and 13,241,370 (86 blocks). Not all of these areas are completely contiguous but remain
in the same area.

75 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.24: Block map of placement in unallocated areas object 24, block size 4096

76 of 140 August 1, 2016

Blockhashing as a forensic method

7.4 Results from dataset 4, misc datasets

7.4.1 Database msc veracrypt

This dataset is created from a 25 GB Veracrypt AES encrypted container. The total
number of rows in the table containing blockhashes with entropy from blocksizes 512 -
16384 is 103,219,200 rows.

The table with SHA256 hashes was checked for collisions. None of the SHA256 has
any collisions.

Block size Entropy

512 0.9488
1,024 0.9760
2,048 0.9885
4,096 0.9943
8,192 0.9972

16,384 0.9986

Table 7.11: Average entropy in veracrypt AES encrypted container

Figure 7.25 shows the distribution of entropy (Y-axis) per block-size (X-axis). The
figure confirms what we have observed in similar tests on dataset one and two. The
entropy increases as the block-size increase. The most significant di↵erence is from block-
size 512 bytes to 1,024. From block-size 8,192 to 16,383 the increase is significantly lower
at it seems like entropy flatten out above 4,096 block-size.

7.4.2 Database msc text

This dataset is generated from text parsed from the forensic image used in database
msc case using the strings command in UNIX (OS X). The table with all block-hashes
from 512 to 16384 is 1,040,731 rows.

The dataset was checked for collisions.

Figure 7.26 and Table 7.12 illustrates the entropy distribution (Y-axis) per block-size
(X-axis). Generally, the entropy on plain ASCII text is not very high. However, the
entropy increases as the block-size increase. The curve is di↵erent for the one we have in
Figure 7.25. In ASCII text, the curve is more linear and seems to increase severe on all
selected block-sizes. We have not tested for larger blocks to eventually find a block-size
where the entropy flatten out more. Like the entropy on encrypted blocks from AES
encrypted data, the steepest part of the curve is between 512 byte-blocks and 1,024.

77 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.25: Average entropy in AES encrypted container per block-size.

Block size Entropy

512 0,6251
1,024 0.6381
2,048 0.6478
4,096 0.6559
8,192 0.6633

16,384 0.6703

Table 7.12: Average entropy in ASCII text

The dataset with blocks from ASCII text was also tested for SHA256 collisions. This
is illustrated in Table 7.13 and Figure 7.27 that represents the table. The figure uses
di↵erent block-sizes from 512 to 16,384 bytes (X-axis). There are two Y-axis. The left
one is number of SHA256 collisions and the right one is duplicate blocks. Both the red
and blue graph is very significant. By increasing the block-size the number of duplicate
blocks are reduced. As observed in other dataset, the most significant di↵erence is be-
tween block-size 512 and 1,024 bytes. When we reach block-size 4,096 bytes, the curve
flatten out.

78 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 7.26: Average entropy in ASCII text per block-size.

Block size SHA256 hits Duplicate blocks Max entropy

512 2,367 25,063 0.745
1,024 608 10,141 0.770
2,048 77 4,233 0.737
4,096 38 1,878 0.157
8,192 23 761 0.156
16,384 7 290 0.000
SUM 3,120 42,366

Table 7.13: Collisions on di↵erent block sizes in msc text database.

The two graphs are to some extent coherent. The ”SHA256 collisions” are unique
SHA256 hashes involved in block collisions (duplicate blocks) while ”duplicate blocks”
are total number of blocks involved in the collisions. On block size 512 bytes, the average
number of block collisions per SHA256 hash is 26,063

2,367 ⇡ 10.

79 of 140 August 1, 2016

Blockhashing as a forensic method

S
H

A
2

5
6

 c
o

ll
is

io
n

s

D
u

p
li

c
a

te
 b

lo
c

k
s

Block size in bytes

Figure 7.27: SHA256 hash collisions and duplicate blocks in ASCII text per block-size.

In Table 7.13 we have the column ”Max entropy”. This is the highest entropy found
among the SHA256 collisions. We notice that the highest entropy on block-size 512
to 2,048 bytes is between 0.745 to 0.737. There is a significant drop in entropy when
the blocks size increase to 4,096 bytes which is an indication of low probability of hash
collisions on large blocks with relatively high entropy.

7.4.3 Entropy in di↵erent file types

Filetype Average Number Size of
entropy of files files in MB

ZIP 0.99 934 15,900
PY 0.57 7,130 89
PDF 0.90 13,415 17,043
DOCX 0.96 702 738
TXT 0.56 700 8,171

Table 7.14: Average entropy on di↵erent file types.

80 of 140 August 1, 2016

Blockhashing as a forensic method

Table 7.14 is a minor test on entropy in di↵erent file types other than the one use
in previous datasets. All files are picked from a running computer with all kind of file
types. The column ”Filetype” is di↵erent file types identified by file-su�x. The third
column is the number of such files and the fourth column is the summary og MB these
files occupy. As an example, we have 13,415 PDF files with total of 17 GB. The second
column, ”Average entropy”, is the average entropy per file type. Typically text files like
TXT and PY (Python source files) has a generally medium entropy while file formats
using di↵erent types of compression have generally a high entropy (0.9 and above).

81 of 140 August 1, 2016

Blockhashing as a forensic method

Part IV

Discussion and Conclusion

82 of 140 August 1, 2016

Blockhashing as a forensic method

8
Discussion

The use of hashes from pieces of data information to identify presence of reference data
in target data are researched in several projects [12–15]. This is the same technique
widely used in digital forensics to identify whole files against a hash-set with a number
of hashes to identify a group of files.

In law enforcement, the police widely use pre-defined hash sets containing known
pictures and videos showing sexual abuse of children.

In digital forensics large sets of hashes are also used in data-reduction to eliminate
files with known hashes from operating system and software installations.

To identify whole files using hash comparison is easier to understand as a valid
method as the identified object is possible to verify by visual inspection.

Using a hash set from known sexual abuse pictures could be compared with hashes
from pictures at the suspect’s machine. When the hash comparison engine discovers
hits, they are marked as identified child abuse in some way by placing these files in their
own category of bookmarks etc. After such an automatic identification, procedures may
require the operator to manually inspect a selection of the findings visually.

The use of block-hashing we could have hits on pieces from known material with
limited abilities to visually approve the findings. This is the main challenge using block
hashes as an identification method.

83 of 140 August 1, 2016

Blockhashing as a forensic method

To approve the findings, we need to implement a set of rules to approve the hits.
These rules must both have requirement to number of coinciding blocks and other factors
that ensure the findings uniqueness.

By number of coinciding blocks, we mean requirement of certain number of equal
blocks in the identification. We could use number of blocks or percentage of coinciding
blocks.

By other factors to ensure uniqueness, we involves techniques and/or algorithms that
approve each single block. Such proof could be the findings in sequential chains of hits,
block-size and entropy.

8.1 Optimal hash algorithm to identify coinciding blocks

In Section 2.2.1 several hash algorithms are evaluated, both MD5, SHA1, SHA256 and
SHA512. The MD5 algorithm several years ago proven not to be collision resistant and
SHA-1 is no longer on the list of approved algorithms from US Department [10]. SHA256
is an algorithm approved to be collision resistant. An even stronger algorithm, SHA512
is also collision resistant. While MD5 that still are widely used generates a hash value of
32 bytes. SHA256 give a 64 byte hash string while SHA512 gives a string of 128 bytes.
We could have choose the SHA512 to increase the strength, but there is no reason to
use an algorithm stronger than necessary. By block hashing a 8 TB drive with 512 byte
blocks, we will have about 16 billion hashes stored in a database. Only the hashes in
this example will occupy 2 TB. If we index the same table on the hash column, the
actual storage requirement will be 4 TB only to store the hashes. By using SHA256, the
storage requirement is the half, 2 TB. This is a factor we need to take into consideration,
and SHA256 is a compromise between strength and storage requirement.

Using weaker hash algorithm than SHA256 is evaluated but decided not to be an
option.

8.2 Optimal Block Size to qualify the method

Several test performed in this project was done using di↵erent block sizes from 512 bytes
to 16 KiB. By measuring entropy on each block generated, we have observed that the
average entropy increases the bigger block we use. In Chapter 7.5 we have measured the
average entropy on JPG pictures using block sizes from 512 to 8,192 bytes.

In Chapter 7.11 we have done similar test on an AES encrypted container using block
sizes from 512 to 16,384 bytes.

84 of 140 August 1, 2016

Blockhashing as a forensic method

In Chapter 7.12 the average entropy on ordinary text files is measured using block
sizes from 512 to 16384 bytes. The dataset with block hashes from ASCII files is one
billion records. Figure 7.26 show the distribution of average entropy for ASCII text.

Common to all of the three results measuring the average entropy using di↵erent
block sizes is that the average entropy increases the larger block size we use.

To have sustainable findings between target data and the reference data, we need to
base the major part of the findings on blocks with high entropy.

Collision detection is also performed on di↵erent data sets. In Chapter 7.12, the col-
lisions on block hashes from ordinary ASCII text files are performed. The table shows
decreased number of collisions as the block size increases. On the one billion record
dataset, we had 25,000 collisions on block size 512 bytes and only 290 collisions using
block size 16,384. We also observed that the maximum entropy changes significantly by
using di↵erent block sizes. On block sizes 512 to 2,048 we had an maximum entropy of
about 0.75. On block size between 4,096 nd 8,192 this drops to 0.15 and only blocks
with entropy of 0 has collisions using block size 16,384 as block-size. This is shown in
Table 7.13 and Figure 7.27.

Looking into Figures 7.3,7.25 and 7.26, we could easily think that using large block
sizes is best as this will give less collisions, less number of blocks to search in and give
the higher entropy.

To decide the optimal block size, we also need to look into the architecture of the
storage to perform search on. On disk level, the default sector size has been 512 bytes
for decades but now the default size is 4,096 bytes. Some devices have been observed
with a sector size of either 8,192 and 16,384 bytes (Apple iPhone, iPod and iPad).

Modern file systems like NTFS, Ext4 and HFS+ use the term blocks or clusters
to describe each allocation unit. Such a block is a collection of one or more sectors
and forms the smallest storage unit for the volume. Among these commonly used file
systems, the most used block/cluster size is 4 KiB. On more modern file systems like
Microsoft ReFS (Resilliant File System) and Oracle ZFS, blocks sizes of 128 KiB are
common.

On older file systems such as FAT16 and FAT32, clusters such a 16 and 32 KiB are
normal and on the Ext 2 and 3 file systems, small block sizes such as 1 KiB are observed
frequently.

85 of 140 August 1, 2016

Blockhashing as a forensic method

When it comes to block hashing and the decision of optimal block size, we have to
use a size adopted to the target for the search. If the search is based on a whole disk, we
need to adapt the sector size used in that particular media. If the search is targeting a
volume, we need to adapt the block size to the volume block/cluster size. The reason for
such an adaptation is the the di↵erence in minimum allocation units used on disks ver-
sus volumes. The minimum allocation unit could be equal, but this need to be confirmed.

A pit-fall in selecting a block size that is larger than the block/cluster size of the
volume when processing a volume, or selecting a block size larger than the sector size
when processing a whole drive, is the risk of making a block hash from an area occupied
by more than one single existing or previously existing file. In this situation we have a
file block contamination.

On the other hand, using small block hashing (512 bytes) will never have occasions
of block contamination, but the side e↵ect is the huge amount of blocks that need to be
processed.

8.3 Entropy to qualify the method

Entropy as qualification to approve the block hashing method is partly discussed in pre-
vious section. All tests performed using di↵erent type of data and di↵erent block sizes
are unambiguous. As we increase the block size, the entropy increases. This is discussed
widely in Chapter 7.

Processing encrypted data, it is not uncommon to have entropy very near 1.00 and
lowest entropy in this type of data is observed in Section 7.4.1 to be near 0.92 for 512
byte blocks, and 0.998 in 16 KiB blocks. Related to other types of data, this could be
defined as high entropy.

In plain ASCII text by using the dataset in Section 7.4.2 the lowest entropy is 0.00
found in block hashes of all sizes (from 512 byte blocks to 16 KiB blocks). In this dataset,
33,000 of the one billion records has an entropy of 0.00.

Between the two examples above that we could use as upper and lower boundaries of
entropy, we have other data sources such as compressed data in jpg pictures, raw data
pictures, videos and pdf documents.

In these type of files, we both have high number of blocks with both high and low
entropy.

86 of 140 August 1, 2016

Blockhashing as a forensic method

Tests performed in this project also shows that collision in blocks of same size with
very low entropy (less than 0.5) is more likely to occur. In Table 7.3, a high number of
collisions is detected in the Dataset-2 with block size of 512 bytes. The average entropy
in the 162,292 collisions is 0.428.

In Dataset-2, nearly 12 million collisions are detected from a set of 50 million records
with block size of 512 bytes. This is shown in Table 7.7. The average entropy on these
collisions is 0.82. Nearly 1 million of these has an entropy less or equal to 0.5 and 750,000
records have entropy of more than 0.9.

In the 50 million records, nearly 9 million were blocks with entropy of 0.0 and all of
them was blocks filles with only 0x00 values.

An important question is to interpret the influence the entropy have in this method.
One option is to use entropy to implement what blocks to perform search in. Another
approach is to use entropy to exclude blocks.

Using entropy to perform data reduction could save a lot of computing as the number
of records are reduced. One option is to remove the records with zero entropy, but this
could lead to unwanted results. Even blocks with zero entropy are still data. Such blocks
of data are often found in the reference data we like to search for in the target and this
could result in gaps in a sequence of common blocks.

If the method relies on having large numbers of common blocks sequentially, this
kind of data reduction could interfere with that requirement.

In Section 2.4 the X-Ways Forensics and Guidance Encase tools claim exclusion of
blocks with repeating pattern. This is not further described. This could be blocks with
low entropy set at a certain unknown level, it could be only blocks with only equal bytes
or by using one or more other criteria.

8.4 Continuous blocks to qualify the method

In a modern file system, the driver in the operating system are usually designed with
algorithms that to some extent will try to store files in an un-fragmentet state. The
Apple HFS+ file system has such algorithms implemented in OS X and will on the fly
make sure files 20 MiB are stored un-fragmented.

87 of 140 August 1, 2016

Blockhashing as a forensic method

A file are by default stored un-fragmented. As the time goes and the disk/volume
fills up, there will be less continuous areas of free clusters/blocks to store large files. It
is inevitably that these files will be fragmented. There is no guarantee that fragments
are stored in numbered order.

When we perform block-hash search in the target data, it is always desirable to have
many common blocks and preferably as a sequence of blocks. This apply both for target
and source (reference) data too.

An ideal example is to have a whole file in the reference data found in the target
data in a sequential non-fragmented state. This could be the fact in some occasions, but
then we name it file carving with file-hash verification afterwards.

The other extremity is a few spread single blocks from the reference data found
spread in the target. This is illustrated in the Figure 8.1

A more desired scenario is illustrated in the Figure 8.2. Here we have several block
chains found in both data sets. The blocks are not only chains but also located in nu-
meric order.

Reference file Target data

Figure 8.1: Example of few spread blocks non sequential and non continuous

88 of 140 August 1, 2016

Blockhashing as a forensic method

Reference file Target data

Figure 8.2: Example of large chunks of common blocks found sequential and ordered in both the reference and
target data

The experiments in Dataset-3, Chapter 7.3, we have several reference files with frag-
ments located in unallocated clusters in a volume from a sharp case. An example is the
reference file number 1 from Table 7.6 where ⇡ 2% of the blocks from a 537 MiB file is
located in the unallocated clusters. The block-size used is 4,096 bytes. Figure 7.5 and
7.20 shows respectively the blocks in the reference file and the presumable same blocks
in unallocated blocks of the volume.

Both Figures 8.3 and 8.4 are copies from Figures 7.5 and 7.20. We notice that all
common blocks have an entropy of more than 0.9 and there is 10 continuous chains from
the reference data we have hit on in the unallocated area. Totally, there is 3,824 common
blocks. Most of these numbers are embedded in the figure.

On the next Figure 8.4 we have tree major areas in the unallocated clusters where
we have located the common blocks found in the reference data. These tree areas are
not continuous but reside in the same ”neighbourhood”.

In another example we use the reference file number 13, Figure 7.12 which is a map
of the 4,096 byte blocks located in unallocated clusters shown in Figure 7.22.

These two figures is also shown here as Figure 8.5 and 8.6.

89 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 8.3: block map of reference object 1, block size 4096

Continuous blocks involves several blocks in a chain, and this could involve blocks
with any level of entropy. In Chapter 2 we involved data reduction as one method to
reduce the number of records in the data set. One method to reduce the amount of
records is to filter out all records with low entropy. Earlier we discuss this in Section
8.3.

By using data reduction on the data set, we could end up removing blocks with
low entropy to reduce the processing time but could result in having gaps in potential
continuous block hits. We have also stated that there exists a lot of blocks with zero
entropy in typical blocks with entirely repeating in the whole block (typically 0x00, 0x↵
etc.). Such blocks could also be part of a chain of continuous blocks. It is important to
have this in mind in the seek of an e�cient search to reduce the processing time.

One of the major question in this project is to determine number of continuous blocks
or size of the continuous area these blocks represent.

90 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 8.4: block map of placement in unallocated areas object 1, block size 4096

Figure 8.5: block map of reference object 13, block size 4096

To determine the continuous value, we have to involve the factors block-size and
number of blocks. As a simple example we could say that 1,000 continuous blocks of 512
byte block-size are as good as 125 blocks each of 4,096 bytes. The size of the continuous
areas are the same, 500 KiB. Which of these two we use does not influence the result and
is not important. A more important approach is to determine a minimum acceptable
size of continuous areas. One method is to set the bias at number of bytes with coherent
data. Another is to use percentage of the coherence between target and the reference
data.
91 of 140 August 1, 2016

Blockhashing as a forensic method

Figure 8.6: block map of placement in unallocated areas object 13, block size 4096

The downside of using number of bytes is to relate it to reference data that could
vary from a few KiB to several GiB or more and we could end up with setting a static
value greater than the reference file. Using percentage of blocks related to blocks in the
reference data could be more statistical correct, at least compared to using just number
of blocks or bytes.

The challenge in using percentage, is to find a bias which is su�cient enough to work
as an admissible proof in court. In Norwegian court of law, the use of predominantly
evidence is defined as proof of more probable than not, often more than 50% certain.

To use the figure 50% directly against number of block hits, would not be correct. A
more correct approach would probably be that a certain amount of coherence will make
the evidence more than 50% probable. That number of blocks could be between 1-50%.

92 of 140 August 1, 2016

Blockhashing as a forensic method

The amount of coherence should not be used as a stand-alone measurement to ap-
prove or dis-approve the findings. The most obvious approach is to combine this factor
with factors like entropy and location in the target data.

Location in the target data is not mentioned specific earlier in the project, but is
demonstrated using block maps from unallocated area in the Dataset-3. Earlier, we
have mentioned that the goal of modern file systems is to store data not fragmented if
possible. Very often we found data stored sequentially even on large files, at least when
there is su�cient storage left. A file system like Ext4 will by default place all data per
file in the same block-group if possible. Even if the file is fragmented, this policy applies.

8.5 False positives/hash collisions

In the evaluation part we have used several datasets with di↵erent behaviour and pur-
pose. Dataset-1 to detect collision in a large database table with up to 15 billion records,
the Dataset-2 to provoke collision to some extent and the dataset-3 to use a real case
as a proof of concept of the technique and method. Some collisions are detected and
expected due to the nature of the di↵erent data sets.

In Dataset-1 there was relatively low number of hash-collisions, 4.6 ⇥ 10�5 in the
table with 512 byte blocks and 3.2⇥ 10�2 in the 4,096 byte block hash table.

In the Dataset-2 with more than 40,000 JPG files taken from a static background
and give pictures visually equal. We detected only 0.14% collisions in the 512 byte block
table and 0.07% in the 1,024 byte blocks. Larger blocks have no collisions detected.
When converted the same pictures to BMP-2 and exclude the 56 byte header, we de-
tected no collision using any block-size. The BMP-2 data is just a bunch of RGB color
numbers. No collision detected in these blocks was a bit surprising.

The main hypothesis is based on low grade of collision in data-blocks at any block-
size. We have set 1.0% and below as low hit-rate.

In the Dataset-3 we have 112 GiB of data from unallocated area of an NTFS system
volume (Windows 7) from the suspect’s machine. In this dataset we detected a high
number of collisions, and was expected. The unallocated areas will normally have large
areas filled with repeating patterns like hex 0x00 or other equal bytes. For the 4,096
byte blocks table in this data-set we found 823,877 blocks filled with zero value bytes.
For the table with hashes from 512 byte blocks we detect a collision rate at 6.1%. This
number of collisions is above the bias of 1.0% and undermines the main hypothesis.

93 of 140 August 1, 2016

Blockhashing as a forensic method

In the unallocated areas we also find chains of blocks with coherence from the
Dataset-1. We found traces of 64 of these videos , and several was found in more
than one instance. About 600,000 blocks (4,096 byte blocks) was related to the video
files in Dataset-1.

The unallocated area is a bit unuasual compared to the allocated area. It is usually
not continuous and is very volatile. According to [34], modern operating system like
Windows NT and above creates numerous files during runtime where Vogel’s tests show
that 80% of newly created files has an average lifetime of 4 seconds. Thousands of files,
often very small with arbitrary content is created and deleted regularly, even in idle time.

Another matter about the unallocated area is the de-fragmentation processes on
modern OS where the OS either automatically according to a schedule or manually is
de-fragmenting files. This means files, usually larger files are partly re-allocated with
a purpose of making all clusters sequential to increase the overall performance of the
computer. During the de-fragmentation process, part of files are copied to new loca-
tions and the copied clusters still remain unchanged in unallocated. If the same file are
de-fragmented more than once, there are possibilities of having same blocks repeated in
unallocated area. If a file is re-allocated once, each block is moved from unallocated area
to allocated and one from allocated to unallocated.

The Dataset-3 was not initially intended used as test source to detect collisions and
probably not suitable to use as source for such testing, at least when this source is from a
system disk of a modern operating system but also generally. Potentially, we could have
occasions where a user erase the same file from two locations. If this had been a video
file of 1.5 GiB, we will have 3 GiB of data changed from allocated area to unallocated.
In this scenario on the same disk, this is about 2.5% of the unallocated area and would
have ended up i our test statistics as block collisions.

Due to the nature of the unallocated area, he high number of collisions in this area
are not in conflict with the main hypothesis.

8.6 Other factors with influence of the method

There are several other factors that influence the method. One of the important factors
to discuss is the data reduction. This topic is to some extent mentioned in the Chapter
2 and 7.

94 of 140 August 1, 2016

Blockhashing as a forensic method

By using block-hashing, we divide the data into equal pieces and create a database-
record for each of them. Such a record by using SHA256 as algorithm, will have a
record length in the database at around 100 bytes. By dividing the data into 512 byte
blocks, we actually put 1

5 of the whole data set into the database. To perform e↵ective
searches in the database, we need to index on the SHA256 value and the storage per
record then increase to around 164 bytes per 512 byte block hash. This is nearly 1

3 of the
whole dataset. By using larger blocks like 4,096 bytes, we decrease the ratio from 1

3 to 1
25 .

Even by using 4 KiB blocks we use severe amount of data storage and processing
time. Data reduction could be an option to reduce this. We have suggested using some
criteria to exclude certain blocks from the database. This is criteria like blocks with low
entropy or blocks from the allocated area to exclude blocks from the unallocated area
on the volume.

Technically, this process is straight forward, but have some side-e↵ects not desired.
By removing blocks using any criteria, will presumable came into conflict with one of the
most important criteria in the method, the continuous blocks factor. Even by excluding
typical zero-entropy blocks (typically blocks with repeating patterns like 0x00, 0x↵ etc),
we potentially broke larger continuous chain of blocks into two or more minor chains.
The challenge and side e↵ects in using data-reduction is demonstrated in Figure 8.7.

The figure demonstrate what impact the data-reduction could have when we exclude
blocks (records in the database) according to some criteria. In this example, the data-
reduction removes blocks that initially could have been part of a chain of common blocks.
After the reduction, the potentially ”one single large chain of blocks” is reduced to tree
separate chains. This could degrade the evidential value of the evidence.

Continuous 8,500 blocks

Without data-reduction

Chain 1

2,000 blocks

Excluded

200 blocks

Excluded

300 blocks

Chain 2

2,000 blocks

Chain 3

4,000 blocks

With data-reduction

Figure 8.7: Data-reduction possible side-e↵ects

95 of 140 August 1, 2016

Blockhashing as a forensic method

To overcome the problem with broken chains when doing data-reduction, we could
set rules in the processing. Such a rule could evaluate several chains. By defining a
reasonable gap-factor between chains, we could as an example conclude that two chains
with a gap of less than a certain amount of blocks is one continuous chain of blocks. This
is technically possible but is a speculative method of making ”Things to look better”
and is forensically not a very sound way of interpreting evidence.

8.7 The combination of block-size, entropy and continuous
blocks

To approve the block hashing as a forensic method we have discussed important factors
to assure the robustness by looking into quality and quantity factors as block-size, en-
tropy, false positives and amount of block-coherence, four factors. Each of these factors
play a vital role to evaluate evidential value the finding have.

In an ideal world we would have hits between reference data and target with many
sequential continuous blocks using large blocks all with high amount of entropy with
almost absence of block collisions in the target data. This is optimal but unfortunately
not very realistic. A more realistic scenario could be (the list is numbered, not ranked):

1. High grade in 3 of 4 factors

2. A reasonable high score within all factors.

In the first option we could pick tree factors but then we have a challenge in ranking
the importance of each factor. A suggested order of the factors after several test and
the evaluations in this chapter should be as follows (1 is most important, 4 is least):

1. Amount of block coherence

High number of common blocks found sequentially

2. Block size

To use as large blocks as possible without exceed the cluster size in the file system
if the search is limited to volume. If limited to a whole disk, do not exceed the
sector size.

3. Entropy

If blocks are found in small continuous chains (typical between 2 and 10), then
high entropy could be important.

4. False positives (block collisions)

decided as the least important factor as collision after several searches is not de-
tected in high grade and have less importance if the previous factors are in use.

96 of 140 August 1, 2016

Blockhashing as a forensic method

The tree first factors in the ordered list is both individual and dependable, partic-
ularly 1 and 2. We could have occasions where we have a reasonable high number of
large blocks continuously that have the same number of bytes on a higher number of
smaller blocks in a chain. As an example, 1,000 blocks of 4.096 byte blocks have the same
amount of common bytes as 8,000 continuous blocks each of 512 bytes. The common
area in both examples are 4 MiB. However, the average entropy for the 4,096 byte block
example will be higher than the average for 512 byte blocks. This is illustrated in Figure
8.8.

The two examples should normally have the same evidential value.

Continuous 8,000 512-byte blocks, Average entropy=0.9000

Continuous 1,000 4,096-byte blocks, Average entropy=0.9400

Figure 8.8: Example of continuous blocks 512 vs 4,096 byte blocks

Another example from the Dataset-3, Chapter 7, Figure 7.13 where 7.0% of the
blocks in the reference file 20 i located in the unallocated area of the target data. In this
example, the finding are spread trough the whole reference file with just small chunks
from 2 to 10 common blocks in chains. Most of the blocks has medium entropy except
an areas in the middle of the picture with 1,344 blocks more or less in chains from 10 to
more than 50 blocks.

In this example, the continuous chains is not large but there is a large number of
them. If we compare this with the location in the unallocated area, we found the com-
mon blocks in a few limited areas (5 major areas). This is shown in Figure 7.18.

In our third example, we use the Figure 7.6 where 9 % (5,406 blocks) of the 4,096
byte blocks from file 9 from the reference data is located in the unallocated area. Here
we have large continuous areas and all common blocks are of high amount of entropy.
The largest chain of blocks here are 2,247 blocks (9.2 MB) with entropy > 0.9.

97 of 140 August 1, 2016

Blockhashing as a forensic method

8.8 Criteria for documentation

In the Section 2.4 about known commercial tools supporting block-hashing we have an
example from X-Ways Forensics. To some extent, the findings is documented with clus-
ter of volume the hit is from, what hash-set the hit is from and the size of the continuous
blocks given in KiB. To verify that the hit actually is from a certain file or other loca-
tion, the operator needs to compare the target and reference data manually. On text
documents this give no major challenges, but when it comes to data with more random
looking content, this is more demanding. The hit list does not contain information about
the hash of the target and/or reference data. There is no reference to block number in
the reference file.

In computer forensics the ability to verify evidence is crucial to ensure the validity
of the traces. We often talk about best practise, and that is procedures adapted trough
a period of time. When it comes to block-hashing, we have found no references to best
practise.

The documentation of digital evidence is often a challenge with no golden standard.
In the teaching at NPUC we often tell the students to document enough but not to much
and not to little.

To ensure the findings is possible to verify, we need both reference to each block in
the target and the reference data. The reference should at least contain information
about:

• Block-size used

• Complete reference to the block in the reference data (reference object type and
internal block number)

• Complete reference to the block in the target data (type of object and internal
block number)

• Characteristics about the block (hash value and entropy)

An example of database with references described above is found in the Table 4.1
and 4.2 in Section 4.1. Similar type of references is used in the Dataset-3 with target
data described as block number in unallocated area from a volume.

98 of 140 August 1, 2016

Blockhashing as a forensic method

8.9 Verification of findings

As stated in previous section, the importance of having a system that generates evidence,
also need to have information make verification possible. By identifying common blocks
with exact location both in reference and target data is crucial to make verification pos-
sible.

We have already done several test showing that the technique works and the same
is proven in earlier works. The whole process in block hashing is a kind of verification
by comparing hash values, but this is on block level. To have an over-all verification,
we need to compare the original reference file with some common data usually found in
unallocated area.

One method to verify is injection-verification where the common blocks found in
unallocated is injected to a copy of the original reference file. Since our method involves
information about location in target and reference file with the SH256 as the link, it is
possible to put the common blocks from unallocated area into the copy of the reference
file. After this process, we can compare the file hash of the injected copy with the orig-
inal file.

The example SQL command is found in A.16 and in Table 8.1 is an example listing.

Figure 8.9 illustrates and example where we have the original reference file # 1 up-
left which is the complete file with a known MD5, H1. Up-right is a copy of the same
reference file which is injected with the common blocks between the reference and target
data. After the injection-verification, the injected file will have a MD5, H2.

If H1 = H2 after the injection, we can be sure that the common data found in un-
allocated area is identical to the same data in same position in the reference file are equal.

Referene Reference SHA256 Unallocated
file # Block # Block #

1 1933 d5fafe4e897abfd57921ee2af7bb30223ec3147adbb1faf7607052338b1e49fc 29104408
1 1934 34ec7298df143d1937e05ab5c853726a5b3bc42e9510fad58215fbe2bec92898 29104409
1 1935 6556eb43b1106f84315dbbf9d362fb827d538e4f324245888315c7c10ed9e492 29104410
1 1936 c14b4dd3d72852ec51d0753db83d6619540b34c6d0f302242acc264708803cbb 29104411
1 1937 de0b3b1b3b9907b121a5cee490617c80fe8a↵c0a4a45837e16d8d0649e53c83 29104412
1 1938 8c2ef1bdedc7664dd7a9ab5c9b6ebc23cdc215cfdda5043cd768c33eea2a4ea6 29104413
1 1939 f719adf8↵b19a8ced46328ea9af200b636718b3db4fed8446f7d3eb1bb8e816 29104414
1 1940 c6cfdae3↵d465370ee95074b41d9aaab77c090a6fbbd0b9564cec7fddea9f92 29104415
1 6144 e98920b04fbf311ae536df262cd937ebbafcf62741839e64e01ada87623↵112 1835788
1 6145 0fa158bf097ab51e4cd624e3204ba9c1576220153368eea7a41944502fe307a8 1835789
1 6146 5b099fcbddb091fa1e5a28a8f4242aba314c889645da1269bf11883439994606 1835790
1 6147 f10f9cbb7058756cec4bb2869b5a2469bf8dc33501a79fd1e6818dfb6066eef5 1835791
1 6148 55b094f2c1ebe6cbbe556929bf3404272982a9cb68b20d8e6894c64cccb7718c 1835792
1 6149 f8da56674acf5abc41777f00a95dd1b70a9a39cf0e46b6c24b563cb7da8f9603 1835793
1 6150 d93b4d0ed04c7859a1cfe21cf7d497322ee8652c993eab31fa↵2611fd2c1929 1835794

Table 8.1: Detection of collisions in video file blocks in Dataset-1, block-size 4,096

99 of 140 August 1, 2016

Blockhashing as a forensic method

Reference file #1, md5=H1 Copy of reference file #1, MD5=H2

Target data (unallocated area) with common blocks to reference data

Figure 8.9: Reconstruct with verification common block from reference and target data

Table 8.1 is the result of a SQL Union search between reference and target data
blocks of same size The table shows 15 hits and is an example of su�cient documenta-
tion of finding. We have the SHA256 hash value in column 3 that connects the data from
target and reference data. Next we have exact reference to the reference file in column
1 and 2 which is the exact reference file with block number. In column 4 we have the
blocks number in the unallocated area. These values are su�cient to use as verifiable
documentation of the findings.

8.10 Other factors influencing the method

One of the goals on doing this project was to use only open source tools. As database
engine, MySQL Community version were used. One major drawback on non commer-
cial database-engines is the lack of ability to perform operations using multi-threading
searches in database tables.

100 of 140 August 1, 2016

Blockhashing as a forensic method

In the largest dataset, the Dataset-1 in Chapter 6.1.2.1 the dataset contains respec-
tively around 2 and 16 billion records per table (table with 4,096 and 512 byte blocks).

One of the tests, detection SHA256 block-hash collisions, the search in the 2 billion
record table was aborted after 87 days. The search would probably have taken around
100 days. Statistically the same search in the 16 billion record table would have taken
eight times more time to perform, more than 2 years.

After the search was aborted, the same database was ported to a Microsoft SQL 2016
server and the same search was done in a fragment of time. The collision detection took
respectively 44 minutes and 11 hours on the same hardware as the MySQL engine.

On Dataset-2 we do collision detection on di↵erent block sizes and on the largest
dataset, the database table from 512 byte blocks from the pictures converted to BMP-2
with about 236 million records, the MySQL finish this in 13,212 minutes while MSSQL
2016 do exactly the same search within 33 minutes. That is a speed of 1

400 and is an
important element when doing such investigation to avoid using more processing time
than needed.

To use block hashing as a forensic method, one of the key elements in performing
such analysis in a reasonable time is the hardware and software, specially the database
engine. It seem undoubtedly that the process depend on a fast and reliable database
engine like Microsoft SQL server, Oracle Server, IBM DB, Sybase or other enterprise
database solutions.

Running the method on small storage from a home computer of 100 GiB could be
solved using community versions of di↵erent databases but as the storage increases, even
on a regular home computer, default storage now are often more than 1 TiB. This is
also according to Moores Law by Gordon E. Moore 1.

The datasets was created using Python scripts and the processing of the target and
reference data could have performed faster with using compiled C sources to executables.

1
http://www.mooreslaw.org

101 of 140 August 1, 2016

Blockhashing as a forensic method

9
Conclusion

In this chapter we will try to answer the reasearch questions stated in Chapter 3 and
discuss if we have archived the goal of this project.

The answer is based on the experimental work in part III and discussion of the results
in Chapter 8.

There is one main research question and five sub-questions, Chapter 3.

Several test was performed using the tree datasets. The following major key questions
is evaluated.

102 of 140 August 1, 2016

Blockhashing as a forensic method

9.1 Is block hashing a recommended, sustainable method
to identify presence of the reference data to use as
admissible evidence in court

9.1.1 Define criteria to ensure blocks in reference and target data are
the same

As stated in Chapter 2, The MD5 algorithm is not on the list of the US Department list
of secure hashes [10]. Today, the more secure hashes are the SHA-1 [18], SHA-2 [32] and
SHA-3 [20] algorithms. SHA-1 [18] is not longer on the same list of secure hashes. The
SHA256 algorithm is decided as the best alternative and no collisions are detected on
this yet. There are other more secure hashes like SHA512, but there is no need to use
more strength than necessary. The SHA512 hash is a string of 128 bytes while SHA256
is a 64 byte string and therefore need half of the storage capacity.

Further description and discussion on di↵erent hash algorithms are in Section 2.2.1
and 8.1.

After intensive testing in Chapter 7 and discussion in Chapter 2 the probability of
false positives are relatively low. In the largest set of data, dataset 1 in Section 7.1,
Table 7.2 a collision frequency of less than 3 ⇥ 10�5 is detected both on block size 512
and 4,095 bytes.

9.1.2 Setting bias for amount of mutual data between reference and
target data

To determine necessary amount of coherence between the reference and target data, we
have several options. One option is to set a minimum number of blocks with equal
hashes. Another approach could be a percentage of the reference data. A third option
could be a combination of these to in addition to the behaviour or the mutual blocks.

The common blocks from the two datasets could either be a spread of single blocks
or chains of blocks with an arbitrary length. One of the goals of modern file systems is
to keep files un-fragmented if possible. The HFS+ file system policy claims files smaller
than 20 MiB are kept unfragmented on the fly. By taking this under circumstance,
we can assume that a major part of the files on modern file systems are stored in one
contiguous chain of blocks/clusters. If this approach is not possible, the file systems will
try to make as few fragments as possible. There will be exceptions from this. Typically
large files from databases and virtual disks are meant to grow over a period of time.
These files are often seen heavy fragmented but is more an exception from the general
rule.

103 of 140 August 1, 2016

Blockhashing as a forensic method

When files are erased, the used blocks in the file system are available for new content
and as the time goes, these areas are filled up with new data. Still, we can expect to find
contiguous file system blocks/clusters from the erased file. To find only single blocks
spread all over the unallocated area is unlikely, especially the large files like digital pho-
tos and video.

In a normal situation, we could expect to find larger areas of contiguous common
blocks in addition to some occasions of single blocks spread in the unallocated area.

In dataset 1 (the msc case database) we have an example from reference file number
20 from Table 7.6 in Figure 7.13. This is from a video file of 52 MB where 7% of the
content is located in one large contiguous chain of blocks in addition to more than 1,000
small fragments between one and five blocks. Common to most of the small fragments
are the amount of entropy. About 15% of the hits have low entropy and nearly 60% have
medium entropy (between 0.5 to 0.9).

The file 20 have an area of about 2,000 contiguous 512 byte blocks. This is nearly
2% of the total number of blocks from this file. If we look at the block map for the same
file but now with blocks size of 4,096 bytes. This is Figure 7.8. If we compare this figure
with the previous one covering 512 byte blocks, all the small fragments of one to five
blocks are omitted since each of these small chains only represents from 512 to 2,560
bytes. Still we have the large contiguous area of 4,096 byte blocks. There is nearly 2,000
common blocks in an almost non-broken chain. These 2,000 blocks are nearly 2% of the
blocks for this reference file.

If we look into file number 1, 9, 13, 20 and 24 from the Table 7.6, we have block maps
for Figures 7.5, 7.6, 7.7, 7.8 and 7.9. These figures shows the 4,096 byte blocks from the
reference data located in unallocated clusters. All these files have large contiguous areas
of common blocks between 1 and 38% of the blocks in the reference files. Figure 7.9 is
from file number 24, and there are two block chains covering the mutual blocks. Even if
this is only 1.5% of the reference data, this is 564 common blocks, each of 4,096 bytes.
This is 2.3 MB out of 152 MB.

For the file 24 we also have a block map of where these common blocks are found in
unallocated areas. If we look into Figure 7.24, we notice two areas in unallocated areas
where these common blocks remain.

The file 24 using 4,096 block size, is a good measure to define a bias of how many
blocks we should set as a minimum to approve that the found blocks in unallocated areas
most certain have been part of the same file as in the reference data.

104 of 140 August 1, 2016

Blockhashing as a forensic method

To further test this hypothesis, we make a copy of file 24 and wiped all common
blocks in that file. That was block 28,500 to 28,585 and 32,290 to 32,767. After this
operation we injected the common blocks from unallocated ares into the copy of file 24.
After this we compared the MD5 hashes of the original file 24 and the injected copy.
Both have the same hash ”fb57452f4a41bd9e7906dac819a63920”. This method to verify,
we have named ”Injection Verification” and is further described in Section 8.9.

By selection two of the files with least amount of common blocks in a chain, it seems
like 1% common blocks in a contiguous chain is su�cient to approve the partly presence
of a reference file in unallocated areas.

In the examples with file 24, we have both stated the common blocks are in chains
both in the reference file and in unallocated areas. The entropy is above 0.9 for most
of the blocks and we have also performed an block injection described two paragraphs
above.

9.1.3 Optimal block size to use

Several block size evaluations are performed in Chapter 7. Previous work have tested
block-hashing using di↵erent block-sizes, mainly 512 and 4,096 bytes. In this project we
have conducted tests on many more blocks sizes, both 512, 1,024, 2,048, 4,096, 8,192 and
16,384. We have compared the average entropy on di↵erent block sizes, detected block
collisions using di↵erent block sizes and used a real case to test the method in full scale.

We have observed several impacts using di↵erent block sizes. First of all, the tests are
consistent about entropy and probability of block collisions when increasing the block
size. All conducted tests shows an decrease of block collisions when increasing the block
size and this is significantly when increasing from 512 to 4,096 byte blocks. The collisions
are severe only by increasing the blocks size from 512 to 1,024 or 2,048 bytes. All tests
on entropy are significant. The entropy increases as the block size increase, and blocks
with high entropy normally are more resistant to collisions.

105 of 140 August 1, 2016

Blockhashing as a forensic method

Another approach is to define the optimal block size. It is undoubtedly that the
larger blocks we use the more consistent the hits are. However, there is a limitation.
It is not recommended to use larger blocks than the smallest allocation block/cluster
size the target uses. If we are performing searches with a volume as target, we have
to avoid larger blocks than the block/cluster-size used in the volume. This is to avoid
block contamination where data from two or more previous files could be part of a single
block. By example using 16,384 as block size to search for, we could end of having data
from up to four di↵erent files in one one single block when processing a volume with
4,096 byte clusters. The same is an approach when a disk is the target. Still many disks
use 512 byte sector size and performing search using block size greater than 512 could
end up with fragments from many files in the same block. Before we start processing a
target object, we need to analyse the structures of the target data.

Today on several of the modern file systems like NTFS and HFS+, the most common
cluster/block size are 4,096 bytes on these. On even more modern file systems like ReFS,
ZFS, btrFS and APFS (APFS is the new file system used by OSX), we can expect to
find cluster/block sizes of either 32, 64 or 128 KiB. In these file systems, block-hashing
can be conducted using even larger blocks than tested here.

The selection of block-size have a severe impact of processing the target data, both
in number of records to handle in a database but also in storage requirements. When
block-hashing terabytes of data, the decision of which block-size to use may have a severe
impact of search time and storage requirement.

9.1.4 Other factors to approve or disapprove the method as robust
enough

An important approach is to evaluate practical issues. Compared to regular file hash-
ing and comparing, block-hashing is far more resource demanding and there are larger
hardware and software challenges. Regular file hashing and comparing, usually rely on
a predefined hash set from known files and we usually don’t need do generate these. In
block hashing, it is not feasible to use the same method even if it’s possible. We will have
to create the block hashes from the reference data on each case. In addition, we need to
create hash sets from the target data, usually the unallocated areas. In normal file hash-
ing, we generate a hash per file and that is generally very few comparing to block hashes.

106 of 140 August 1, 2016

Blockhashing as a forensic method

In block hashing the comparing of hashes involves multiple more hashes than in regu-
lar file hashing and the reference data also involves multiple more hashes than normal file
hashing. In dataset 1 we have one database table with 15 billion 512 byte block-hashes
from 8 TB of video files. In a normal case to compare that large number of blocks with
another database table with an arbitrary number of block-hashes, require both a lot of
processing power and software (usually a database engine) able to handle a cross query
between those tables. We have already tested this and have experienced the importance
of the database capabilities. Using a database engine not capable of utilize all resources
on the physical machine, is not recommended and the search is not feasible.

Entropy is a topic described thorough in this prosject, bot in Section 2.2.2 and 8.3.
Entropy can both be used to exclude blocks-hash records from the database. Entropy
can also be used as a filter to what findings to include in the list of evidence. In Section
8.3 we have already stated that data reduction probably will interfere with the most
important criteria in this method, ”contiguous blocks”. To use entropy to evaluate the
evidential strength of mutual blocks are more realistic. We have already observed in
several tests that the probability of block collisions are more likely on blocks with low
entropy. To define an entropy value as high or low, we need to put the value in context of
what type of data we search for. Are we searching for data objects typically compressed
or encrypted, entropy below 0.9 must be considered as low. If the data we search for are
plain ASCII text, we may consider defining high entropy as above 0.7.

In Section 9.1.2 we have concluded that chains of contiguous blocks in the findings
are better than single blocks or small chunks of blocks. By adding entropy into the
evaluation, we can strengthen the evidential value these findings represents, or opposite,
reduce the evidential strength.

9.1.5 Verifiable

In Section 8.9 is discussed and the ability to verify evidence are crucial in all digital
forensic work. By verifiable we both mean the ability the initial investigator that conduct
the block-hashing, or a third party person has to verify the findings. To make such
verification possible, we need to have su�cient documentation. This is further described
in Section 8.8, and these recommendations should be a minimum. The finding have to
be documented with the following information:

• Block-size used

• Complete reference to the block in the reference data (reference object type and
internal block number)

• Complete reference to the block in the target data (type of object and internal
block number)

• Characteristics about the block (hash value and entropy)

107 of 140 August 1, 2016

Blockhashing as a forensic method

An example of documentation after a block hash search is in Table 8.1

9.1.6 Is it feasible to combine the above criteria to ensure the findings
are admissible evidence ?

The di↵erent criteria are hash algorithm to use for block comparison, block-size, con-
tiguous chains of blocks and entropy are factors in combination that would have the
potentiality to ensure findings are of high evidential value and usable as admissible evi-
dence in court of law. The selected hash algorithm, SHA256 is strong and approved to
be collision resistant and is one of the accepted algorithms approved by US Government.
By ensure the and optimal block-size is used and coincide blocks are mainly contigu-
ous with more than a few blocks, it should be su�cient to use as admissible evidence.
To additionally increase the strength of the evidence, we recommend using entropy as a
factor to qualify the finding. The entropy must be adapted the kind of data we search for.

In addition, the documentation must be su�cient and as described earlier in this
chapter and further in the Section 8.8. We also recommend that a reasonable number
of finding are verified manually or by using software dedicated to such verification.

9.2 Investigative skills

Using block-hashing to identify previously erased content are most relevant when using
the unallocated areas as target for the search. The method is not only about finding
equal blocks between two datasets but involves many aspects and several elements must
be evaluated. To make sure the finding are admissible as evidence in court, the investi-
gator need extensive skills evaluate the findings and set criteria that make the evidential
value strong enough. The investigator need deep knowledge about the architecture of
disk, file systems, the unallocated area and di↵erent file types. The investigator must
be capable of defining correct block-size to use and evaluate the relevance entropy have
on di↵erent types of data.

The block-hashing method to locate previously erased data in a target data area
based on blocks from reference data is illustrated in Figure 9.1

9.3 Further work

Research tries to answer the research questions by include a set of parameters to ensure
finding after a block-hashing location of previous erased data. Using this method of
searching for blocks of erased data involves a huge amount a storage and processing
capacity in the analysing environment. During a research, it is not uncommon that the
research yields more questions and therefore new research.

108 of 140 August 1, 2016

Blockhashing as a forensic method

Strong hash

algorithm

Investigative skills

Documentation and verification

Contiguous

chain of blocks

Optimal adapted

block-size

Entropy

Figure 9.1: The block-hashing method illustrated.

Performing this kind of investigation involves a lot of processes to create the datasets,
particularly to process, generate and fill the databases with block data. Next the actual
search and finally the verification.

Today the exists a few tools performing this kind of analysis and these are referred
to in Section 2.4. These tools are not according to the set of criteria in this project.
Building a software framework with the block-hashing implemented to meet all criteria
defined here would be a natural extension of this project.

In this project, we have only used one single real case. The method should be more
intensely tested against real cases with an increased focus on verification of findings.

109 of 140 August 1, 2016

Blockhashing as a forensic method

Bibliography

[1] Handbook of Information Security, Information Warfare, Social, Legal, and Inter-
national Issues and Security Foundations. John Wiley and Sons, 2006.

[2] File System Forensic Analysis. Addison-Wesley, 2010.

[3] Jason Beckett and Jill Slay. Digital forensics: Validation and verifi-
cation in a dynamicwork environment. 2007. Last visited 2016-06-08
at https://www.computer.org/csdl/proceedings/hicss/2007/2755/
00/27550266a.pdf.

[4] Brian Carrier. Open source digital forensics tools the legal argument 1. 2009.
Last visited 2016-05-03 at http://www.digital-evidence.org/papers/
opensrc_legal.pdf.

[5] C. G. Chakrabarti and I. Chakrabarty. Boltzmann entropy : Probability and in-
formation. ., 2007. Last visited 2016-04-21 at http://arxiv.org/pdf/0705.
2850.pdf.

[6] Colinn Chisholm. Integrating forensic investigation methodol-
ogy into ediscovery. SANS, 2010. Last visited 2016-04-21 at
https://www.sans.org/reading-room/whitepapers/incident/
integrating-forensic-investigation-methodology-ediscovery-33448.

[7] Sylvain Collange, Yoginder Dandass, Marc Daumas, and David Defour. Using
graphics processors for parallelizing hash-based data carving. IEEE Computer Soci-
ety, 2009. Last visited 2016-04-21 at https://hal.archives-ouvertes.fr/
file/index/docid/350962/filename/ColDanDauDef09.pdf.

[8] Microsoft Corp. Default cluster size for ntfs, fat, and exfat. 2016. Last visited
2016-04-21 at https://support.microsoft.com/en-us/kb/140365.

[9] Seagate Corp. Transition to advanced format 4k sector hard drives. 2011-2012. Last
visited 2016-04-21 at http://www.seagate.com/gb/en/tech-insights/
advanced-format-4k-sector-hard-drives-master-ti/.

[10] USA Department of Commerce. Fips pub 180-4 secure hash standard (shs).
., 2015. Last visited 2016-04-21 at http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.180-4.pdf.

110 of 140 August 1, 2016

https://www.computer.org/csdl/proceedings/hicss/2007/2755/00/27550266a.pdf
https://www.computer.org/csdl/proceedings/hicss/2007/2755/00/27550266a.pdf
http://www.digital-evidence.org/papers/opensrc_legal.pdf
http://www.digital-evidence.org/papers/opensrc_legal.pdf
http://arxiv.org/pdf/0705.2850.pdf
http://arxiv.org/pdf/0705.2850.pdf
https://www.sans.org/reading-room/whitepapers/incident/integrating-forensic-investigation-methodology-ediscovery-33448
https://www.sans.org/reading-room/whitepapers/incident/integrating-forensic-investigation-methodology-ediscovery-33448
https://hal.archives-ouvertes.fr/file/index/docid/350962/filename/ColDanDauDef09.pdf
https://hal.archives-ouvertes.fr/file/index/docid/350962/filename/ColDanDauDef09.pdf
https://support.microsoft.com/en-us/kb/140365
http://www.seagate.com/gb/en/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/gb/en/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Blockhashing as a forensic method

[11] Stefan Fleischmann. X-ways forensics/winhex manual. 2016. Last visited 2016-04-21
at http://www.x-ways.net/winhex/manual.pdf.

[12] Kristina Foster. Thesis: Using distinct sectors in media sampling and full media
analysis to detect presence of documents from a corpus. 2012. Last visited 2016-
04-21 at http://simson.net/ref/2012/kmf_thesis.pdf.

[13] Simson Garfinkel, Alex Nelson, Douglas White, and Vassil Roussev. Using purpose-
built functions and block hashes to enable small block and sub-file forensics. El-
sevier, 2010. Last visited 2016-06-23 at http://www.sciencedirect.com/
science/article/pii/S1742287610000307.

[14] Simson L. Garfinkel and Michael McCarrin. Hash-based carving: Searching media
for complete files and file fragments with sector hashing and hashdb. Elsevier,
2015. Last visited 2016-04-21 at http://www.sciencedirect.com/science/
article/pii/S1742287615000468.

[15] Simson L. Garfinkel, Joel Young, Kristina Foster, and Kevin Fairbanks. Distinct
sector hashes for target file detection. Computer, 2012, 2012. Last visited 2016-04-
21 at http://ieeexplore.ieee.org.ucd.idm.oclc.org/stamp/stamp.
jsp?tp=&arnumber=6311397.

[16] Angel Garrido. Classifying entropy measures. Symmetry, 2011. Last visited 2016-
04-21 at http://www.mdpi.com/2073-8994/3/3/487/pdf.

[17] Yinghua Guo, Jill Slay, and Jason Beckett. Validation and verification of computer
forensic software tools - searching function. ScienceDirect, Elsevier, 2009. Last vis-
ited 2016-06-08 at https://www.dfrws.org/2009/proceedings/p12-guo.
pdf.

[18] Tony Hansen and Garrett Wollmann. Rfc 3174, us secure hash algorithm 1 (sha1).
2001. Last visited 2016-04-27 at https://tools.ietf.org/html/rfc3174.

[19] Dustin Hurlbut. Fuzzy hashing for digital forensic investigators. 2009. Last visited
2016-04-21 at https://ad-pdf.s3.amazonaws.com/Fuzzy_Hashing_for_
Investigators.pdf.

[20] Andrey Jivsov. The use of secure hash algorithm 3 in openpgp (draft, expires
feb 2016). 2015. Last visited 2016-04-27 at https://tools.ietf.org/html/
draft-jivsov-openpgp-sha3-01.

[21] Simon Key. File block hash map analysis. Guidance Software App Central,
2013. Last visited 2016-04-21 at https://www2.guidancesoftware.
com/appcentral/Pages/product.aspx?cat=GuidanceSoftware&pid=
180010074WS.

111 of 140 August 1, 2016

http://www.x-ways.net/winhex/manual.pdf
http://simson.net/ref/2012/kmf_thesis.pdf
http://www.sciencedirect.com/science/article/pii/S1742287610000307
http://www.sciencedirect.com/science/article/pii/S1742287610000307
http://www.sciencedirect.com/science/article/pii/S1742287615000468
http://www.sciencedirect.com/science/article/pii/S1742287615000468
http://ieeexplore.ieee.org.ucd.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=6311397
http://ieeexplore.ieee.org.ucd.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=6311397
http://www.mdpi.com/2073-8994/3/3/487/pdf
https://www.dfrws.org/2009/proceedings/p12-guo.pdf
https://www.dfrws.org/2009/proceedings/p12-guo.pdf
https://tools.ietf.org/html/rfc3174
https://ad-pdf.s3.amazonaws.com/Fuzzy_Hashing_for_Investigators.pdf
https://ad-pdf.s3.amazonaws.com/Fuzzy_Hashing_for_Investigators.pdf
https://tools.ietf.org/html/draft-jivsov-openpgp-sha3-01
https://tools.ietf.org/html/draft-jivsov-openpgp-sha3-01
https://www2.guidancesoftware.com/appcentral/Pages/product.aspx?cat=GuidanceSoftware&pid=180010074WS
https://www2.guidancesoftware.com/appcentral/Pages/product.aspx?cat=GuidanceSoftware&pid=180010074WS
https://www2.guidancesoftware.com/appcentral/Pages/product.aspx?cat=GuidanceSoftware&pid=180010074WS

Blockhashing as a forensic method

[22] Jesse Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Science Direct, Elsevier, 2006. Last visited 2016-04-21 at http://dfrws.
org/2006/proceedings/12-Kornblum.pdf.

[23] Kailash Kumar, Sanjeev Sofat, S. K. Jain, and Naveen Aggarwal. Significance of
hash value generation in digital forensic: A case study. International Journal of
Engineering Research and Development, 2012. Last visited 2016-06-08 at http:
//www.ijerd.com/paper/vol2-issue5/I02056470.pdf.

[24] Yuping Li, Xinming Ou, Sathya Chandran Sundaramurthy, Doina Caragea, Jiy-
ong Jang, Alexandru G. Bardas, and Xin Hu. Experimental study of fuzzy
hashing in malware clustering analysis. USENIX, 2015. Last visited 2016-04-21
at https://www.usenix.org/conference/cset15/workshop-program/
presentation/li.

[25] Emily Namey, Greg Guest, Lucy Thairu, and Laura Johnson. Data reduction
techniques for large qualitative data sets. 2007. Last visited 2016-04-27 at
http://web.stanford.edu/˜thairu/07_184.Guest.1sts.pdf.

[26] Alexander Noè. Avi file format. 2006. Last visited 2016-06-08 at http://www.
alexander-noe.com/video/documentation/avi.pdf.

[27] Krzysztof Okupski. Bitcoin developer reference 2015. ., 2015. Last visited 2016-04-
21 at http://enetium.com/resources/Bitcoin.pdf.

[28] Ronald. L. Rivest. Rfc 1321, the md5 message digest algorithm. 1992. Last visited
2016-04-27 at https://www.ietf.org/rfc/rfc1321.txt.

[29] Richard P. Salgado. Fourth amendment search and the power of the hash.
2005. Last visited 2016-05-24 at http://federalevidence.com/pdf/2013/
02Feb/EE-4thAmSearch-Power%20of%20Hash.pdf.

[30] C. E. Shannon. A mathematical theory of communication. The Bell System Tech-
nical Journal, Vol 27, 1948. Last visited 2016-04-21 at http://www.essrl.
wustl.edu/˜jao/itrg/shannon.pdf.

[31] Matthew M. Shannon. Forensic relative strength scoring: Ascii and entropy scoring.
International Journal of Digital Evidence, Vol 2, Issue 4, 2004. Last visited 2016-
04-21 at http://digital4nzics.com/Student%20Library/Forensic%
20Relative%20Strength%20Scoring-%20ASCII%20and%20Entropy%
20Scoring.pdf.

[32] Sean Turner. Rfc 5754, using sha2 algorithms with cryptographic message syntax.
2010. Last visited 2016-04-27 at https://tools.ietf.org/html/rfc5754.

[33] Sriram Vajapeyam. Understanding shannon’s entropy metric for information. 2014.
Last visited 2016-04-21 at http://arxiv.org/pdf/1405.2061.pdf.

112 of 140 August 1, 2016

http://dfrws.org/2006/proceedings/12-Kornblum.pdf
http://dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.ijerd.com/paper/vol2-issue5/I02056470.pdf
http://www.ijerd.com/paper/vol2-issue5/I02056470.pdf
https://www.usenix.org/conference/cset15/workshop-program/presentation/li
https://www.usenix.org/conference/cset15/workshop-program/presentation/li
http://web.stanford.edu/~thairu/07_184.Guest.1sts.pdf
http://www.alexander-noe.com/video/documentation/avi.pdf
http://www.alexander-noe.com/video/documentation/avi.pdf
http://enetium.com/resources/Bitcoin.pdf
https://www.ietf.org/rfc/rfc1321.txt
http://federalevidence.com/pdf/2013/02Feb/EE-4thAmSearch-Power%20of%20Hash.pdf
http://federalevidence.com/pdf/2013/02Feb/EE-4thAmSearch-Power%20of%20Hash.pdf
http://www.essrl.wustl.edu/~jao/itrg/shannon.pdf
http://www.essrl.wustl.edu/~jao/itrg/shannon.pdf
http://digital4nzics.com/Student%20Library/Forensic%20Relative%20Strength%20Scoring-%20ASCII%20and%20Entropy%20Scoring.pdf
http://digital4nzics.com/Student%20Library/Forensic%20Relative%20Strength%20Scoring-%20ASCII%20and%20Entropy%20Scoring.pdf
http://digital4nzics.com/Student%20Library/Forensic%20Relative%20Strength%20Scoring-%20ASCII%20and%20Entropy%20Scoring.pdf
https://tools.ietf.org/html/rfc5754
http://arxiv.org/pdf/1405.2061.pdf

Blockhashing as a forensic method

[34] Werner Vogel. File system usage in windows nt 4.0. Symposium on Op-
erating Systems Principles, 1999. Last visited 2016-06-16 at https:
//www.cs.cornell.edu/projects/quicksilver/public_pdfs/File%
20System%20Usage.pdf.

[35] Xiaoyun Wang and Songbo Yu. How to break md5 and other hash func-
tions. 2005. Last visited 2016-04-21 at http://merlot.usc.edu/csac-f06/
papers/Wang05a.pdf.

113 of 140 August 1, 2016

https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/File%20System%20Usage.pdf
https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/File%20System%20Usage.pdf
https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/File%20System%20Usage.pdf
http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf
http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf

Blockhashing as a forensic method

Part V

Appendices

114 of 140 August 1, 2016

Blockhashing as a forensic method

A
Scripts

115 of 140 August 1, 2016

Blockhashing as a forensic method

A.1 Python Scripts

In this chapter we will include the most important scripts used in creating the datasets used
for the di↵erent testing scenarios.

A.1.1 Python script to create filehashes

Code A.1: Python script Filehashing 0.0.6.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Qsync/PHS/UCD/UCD-2014/Pythoncode/Filehashing_0.0.6.py
Author: Kurt H Hansen
Created: 27.01.2015
Modified: 17.01.2016
Purpose: MSc project. Create a database of blockhashes ripped from certain files
Version: 0.0.6
#
Changes 10.02.15 0.0.5 In main() a bug is fixed causing the
hashing to start over if choosing
both export to db and txt.That result
in overwriting the exported text files.
#
Planned - Add a function to test if the output textfile if
dbTXT=True exists and if you suppose to overwrite it.
- Find possibilities to speed up the processes

import sys, os, math, hashlib, datetime, time
import mysql.connector # The MySQL engine
from mysql.connector import errorcode

reload(sys)
sys.setdefaultencoding("latin-1")

########## Static values #######################
global FileTypesToEvaluate
global PrintToTXT
global PrintToDB

PrintToTXT = True
PrintToDB = False
The path were to hash from
FilesToHashPath = r’/Volumes/Rugged_Key 1/’
Give all in lower-case. The search convert the filename to lc.
#FileTypesToEvaluate = (’avi’, ’mpg’, ’mpeg’, ’mov’, ’wmv’, ’mp4’, ’m4p’,
’m4v’,’sub’,’divx’,’rmvb’,’flv’,’ts’,’vob’,’mkv’)

Give all in lower-case. The search convert the filename to lc.
FileTypesToEvaluate = (’jpg’)
The file path+name and MD5 is dumped to this file if PrintToTXT = True
FileToDumpTSV = "/Volumes/Rugged_Key 1/GoProTSV.txt"

###
The MainFileHashing function do the following:
- Traverse a given folder and its subfolder
- Creates a MD5 hash of files with ending found in the FileTypesToEvaluate
- Save the file-path+name and MD5 to MySQL and/or TSV file
#
###
def MainFileHashing(cnx, cursor):

TotalTimeStart=time.time()
TotalFileSize=0
Opens the output TSV file for write
FilehashTSV=open(FileToDumpTSV, "w")
Set the searchdir static
for path, subdirs, files in os.walk(FilesToHashPath):

for filename in files:
Make a lower-case instance of the filename when
filenameTOlower=filename.lower()
in next line check for valid suffixes in lower-case
Check if the file endings are according to the
if filenameTOlower.endswith(FileTypesToEvaluate):

116 of 140 August 1, 2016

Blockhashing as a forensic method

global variable set of extensions
FileTimeStart=time.time()
Concatenate File path + name
FilePathName = os.path.join(path, filename)
Open the file, read only, binary
f1=open(FilePathName,"rb").read()
Calculate the MD5 of the file
MD5hash=hashlib.md5(f1).hexdigest()
fsize=os.path.getsize(FilePathName)
fext=os.path.splitext(FilePathName)[1][1:].lower()
if PrintToTXT:

Write to the textfile if PrintToTXT = True
FilehashTSV.write(str(FilePathName)+"\t"+ MD5hash + "\t" + \

str(fsize) + "\t" + fext + os.linesep)
if PrintToDB:

Write to MySQL db if PrintToDB = True
dbWriteRecord_Filehash(cursor, [FilePathName,MD5hash, fsize, fext])
cnx.commit()

FileTimeEnd = time.time()
TotalFileSize += os.path.getsize(FilePathName)
print "Finished in", FileTimeEnd-FileTimeStart, " s, Size: ", \

("{:,}".format(os.path.getsize(FilePathName))), " File:",
FilePathName

FilehashTSV.close()
TotalTimeEnd=time.time()
print "Total processing time=", TotalTimeEnd - TotalTimeStart, " Seconds"
print "Total bytes processed:", ("{:,}".format(TotalFileSize))," Bytes"
return True

###
The dbWriteRecord_Filehash function do the following:
- Receives the cursor object and the values to store in the
- table Hashdatabase in the database MSc
- The Filename and MD5 is written to the MSc.Hashdatabase
#
###
def dbWriteRecord_Filehash(cursor, dbRecord):

dbRecord is CursorObject, [FileID, sha256hash, blocknum, Entropy]

dbAddBlockhash = ("INSERT INTO hashdatabase "
"(Filename, MD5, Filesize, Filetype)"
"VALUES (%s, %s, %s, %s)"

)
dataAddBlockhash =(dbRecord[0],

dbRecord[1],
dbRecord[2],
dbRecord[3]
)

cursor.execute(dbAddBlockhash, dataAddBlockhash)
return True

def dbCreateTable(cnx, cursor):
##
Define the tables in a dictionary of table defs
##
TABLES={}
TABLES[’hashdatabase’] = (

"CREATE TABLE hashdatabase ("
" id int(11) NOT NULL AUTO_INCREMENT,"
" Filename varchar(255) NOT NULL,"
" MD5 varchar(32) NOT NULL,"
" Filesize bigint(20),"
" Filetype varchar(12),"
" Blockhashed varchar(15),"
#" INDEX Hash USING BTREE (MD5(8)), "
" PRIMARY KEY (id)"
") ENGINE=MYISAM")

##
Iter trough the dictionary and execute the creation
of tables trough the cursor object
##
for name, ddl in TABLES.iteritems():

try:

117 of 140 August 1, 2016

Blockhashing as a forensic method

print(’Creating table {}: ’.format(name))
cursor.execute(ddl)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:

print("The table already exists.")
###
Shall we erase the existing table or not.
If not, the new hashes is appended to the table
###

isDropTable=raw_input("The table " + name + \
" exists. Do you want to delete the existing \
and create new table (yes/no): ")

if isDropTable.lower() == ’yes’:
sql = "DROP TABLE IF EXISTS %s" % (name)
cursor.execute(sql) # Drops the Table Hashdatabase
cnx.commit()
print "The existing table {} is dropped".format(name)
cursor.execute(ddl) # Creates a new empty Hashdatabase
cnx.commit()
print "The table {} is created and empty, "+ \

"ready for refueling".format(name)
else:

print(err.msg)
else:

print("OK")

return True

############## Main ###################################
#
Use the Oracle mySQL plugin to handle mySQL databases
Open te database MSc
#
###
def main():

if PrintToDB:
try:

cnx =mysql.connector.connect(user=’root’, host=’localhost’, database=’msc’)
except mysql.connector.Error as err:

if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
print("Something is wrong with your user name or password")

elif err.errno == errorcode.ER_BAD_DB_ERROR:
print("Database does not exists")

else:
print(err)

else:
print("Connected to the database successfully !")

cursor=cnx.cursor()

dbCreateTable(cnx, cursor)

###
Starts the following:
MainFileHashing(cursor) # The Hashing engine
###
BlockHashingResult = MainFileHashing(cnx, cursor)
cursor.close()
cnx.commit()
cnx.close()

else:
BlockHashingResult = MainFileHashing(False,False)

return True

if __name__ == "__main__":
main()

118 of 140 August 1, 2016

Blockhashing as a forensic method

A.1.2 Python script to create blockhashes

Code A.2: Python script BlockHashing 0.1.3.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Qsync/PHS/UCD/UCD-2014/Pythoncode/BlockHashing_0.1.3.py
Author: Kurt H Hansen
Created: 27.01.2015
Modified: 16.01.2016
Purpose: MSc project. Create a database of blockhashes ripped from certain files
Version: 0.1.3
Changes: 09.02.15 0.1.1 All references to database and tables is now in lowercase

letters
like msc, blockhash* and filenames*
09.02.15 0.1.2 Changes the fields exported/written to db.
Not use path and file type any more
16.01.16 0.1.3 Improve the documentation and the tables at the bottom
#
import sys, os, math, struct, hashlib, time
import entropy # https://pypi.python.org/pypi/entropy/0.9

import encodings
import unicodedata
import mysql.connector # The MySQL engine
from mysql.connector import errorcode

reload(sys)
sys.setdefaultencoding("utf8")

def usage():
print len(sys.argv)
print "The script was started wtih wrong options"
print "The script require two arguments !"
print "Use the following syntax: "
print sys.argv[0], " <Full path to pictures> <full path/filename to TSV file> <file ext

>"
sys.exit()

#-----Global static values --
global InitialBlockSize
global HashType # Not yet in use
global PrintToTXT
global PrintToDB

InitialBlockSize = 8192
HashType="SHA256"
PrintToTXT = True # True = Dumps the records to a textfile
PrintToDB = False # True = Dumps the records to MySQL database
PrintToTXTDelimiter=’,’

The path were to hash from
FilesToHashPath = r’/Volumes/LaCie/msc_pictures/’
The file path+name and MD5 is dumped to this file if PrintToTXT = True
FileBlockhashToDumpTSV = "/Volumes/LaCie/msc_pictures/Blockhash" + str(InitialBlockSize)+".

txt"
The file path+name and MD5 is dumped to this file if PrintToTXT = True
FileNamesToDumpTSV = "/Volumes/LaCie/msc_pictures/Filenames" + str(InitialBlockSize)+".txt"

###
The BlockHashing function do the following:
- Traverse a given folder and its subfolder
- Divide the file into blocks os size = InitialBlockSize
- Calculates the SHA256 of the block
- Calculates the entropy of the block
- Ommit the last block of a fileif size < InitialBlockSize
#
#
###
def BlockHashing(cnx, cursor):

’’’

Opens the msc --> hashdatabase
This is the database of files already hashed and ensured no duplicates
This is the connection to read file values to traverse

119 of 140 August 1, 2016

Blockhashing as a forensic method

’’’
try:

cnx2=DatabaseConnection()
cnx2 =mysql.connector.connect(user=’root’, host=’localhost’,
password=’root’, database=’msc_pictures’)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:

print("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:

print("Database does not exists")
else:

print(err)
else:

print("Connected to the database successfully, \
connection used for the Hashdatabase!")

cursor2=cnx2.cursor()

’’’

Opens the msc --> hashdatabase
This is the database of files already hashed and ensured no duplicates
This is the connection to make update to Hashdatabase

’’’
try:

cnx3=DatabaseConnection()
cnx3 =mysql.connector.connect(user=’root’, password=’root’,
host=’localhost’, database=’msc_pictures’)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:

print("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:

print("Database does not exists")
else:

print(err)
else:

print("Connected to the database successfully, \
connection used for the hashdatabase!")

cursor3=cnx3.cursor()

’’’

Select the database of files that is hashed for the dataset

’’’
cursor2.execute("SELECT id, Filename, Filetype, Blockhashed \

FROM hashdatabase where id > 0")

TotalTimeStart=time.time() # Timer, Total
TotalFileSize=0 # Sumarize file sizes
FileID = 0 # The FileID is the uniq number to

connect filenmes to Blockhashes
FileRemnantsExists = False
if PrintToTXT:

a=open(FileNamesToDumpTSV, "w") # The file where to dump filenames (Use "a"
to append)

b=open(FileBlockhashToDumpTSV, "w") # The file where to dump Block Hashes

row = cursor2.fetchone() # Retrieves the first file from msc-->
hashdatabase

while row is not None: # row[0]=id row[1]=Filename
row[2]=Filetype row[3]=Blockhashed

FileTimeStart=time.time() # Timer start on each file
f_status=os.path.isfile(row[1]) # Check if the file still

exists
FilePathName = row[1] # Get file pat+name from

Hashdatabase
FileNameExt=os.path.splitext(FilePathName)[1][1:] # Pick the file name extension,

without the .
FileID = row[0] # File number

120 of 140 August 1, 2016

Blockhashing as a forensic method

Determine the file size
filelength=os.path.getsize(FilePathName)
Check if the last part of the file is < InitialBlockSize
if filelength % InitialBlockSize > 0:

FileRemnantsExists = 1
else:

FileRemnantsExists = 0
if PrintToTXT:

a.write(str(FileID) + PrintToTXTDelimiter + str(FileRemnantsExists) + os.
linesep)

if PrintToDB:
dbWriteRecord_Filename(cursor, [FileID, FileRemnantsExists])

’’’

Open the selected file. Read all the content in one chunk
The Blockhashing starts here

’’’
Open the file, read only, binary
f1=open(FilePathName,"rb").read()
blocknum=0
for i in range(0, filelength,InitialBlockSize):

block=f1[i:i+InitialBlockSize]
If the block size < 512 bytes, ommit it.
if len(block) < InitialBlockSize:

Indicates if True the file has a chunk at the end
not processed because < InitialBlockSize
FileRemnantsExists = True

else:
Calculate the SHA256 of the block
sha256hash=hashlib.sha256(block).hexdigest()
Calculates the entropy of the block Entropy = 0-1
Entropy = entropy.shannon_entropy(block)
if PrintToTXT:

b.write(str(FileID) + PrintToTXTDelimiter + sha256hash+
PrintToTXTDelimiter + \

str(blocknum) + PrintToTXTDelimiter + str(Entropy) + os.linesep
)

if PrintToDB:
dbWriteRecord_Blockhash(cursor, [FileID,

sha256hash,
blocknum,
Entropy
])

FileTimeEnd = time.time()
blocknum +=1

TotalFileSize += os.path.getsize(FilePathName)
blocknum=0 # File is processed, set block to 0
FileRemnantsExists=False # Resets the indicator of smal ending

of file
if PrintToDB:

cnx.commit()
tmp_fsize=os.path.getsize(FilePathName)
print "ID:", FileID, " Time:", round(FileTimeEnd-FileTimeStart,2), "s, Speed:", \

round(tmp_fsize/(FileTimeEnd-FileTimeStart),3), " b/s Size: ", \
("{:,}".format(tmp_fsize)), " File:", FilePathName

’’’

Evaluating the existing value in Hashdatabase-->Blockhashed
If it contains the value from InitialBlockSize, we need not to change
If the value not exists, the string is added, eks. ’512:’
The format of the field is by example ’512:1024:4096:’
All 3 indicates the file is blockhashed for the 3 sizes of blockhash

’’’
Hashdatabase_InitialBlockSize=row[3]
str_search = -1
if isinstance(Hashdatabase_InitialBlockSize, basestring):

str_search=Hashdatabase_InitialBlockSize.find(str(InitialBlockSize)+’:’)
else:

Hashdatabase_InitialBlockSize = ’’
if str_search < 0: # Negative value indicates that the string is not found in

the string
Hashdatabase_InitialBlockSize += str(InitialBlockSize) + ’:’

121 of 140 August 1, 2016

Blockhashing as a forensic method

sql=’UPDATE Hashdatabase SET Blockhashed="%s" \
WHERE id=%s’ % (Hashdatabase_InitialBlockSize, row[0])

#print sql
cursor3.execute(sql)
cnx3.commit()

row = cursor2.fetchone() # Retrieves the next file from msc-->hashdatabase

’’’

The Blockhashing ends here per file

’’’
if PrintToTXT:

b.close()
a.close()

TotalTimeEnd=time.time()
print "Total processing time=", TotalTimeEnd - TotalTimeStart, " Seconds"
print "Total bytes processed:", ("{:,}".format(TotalFileSize))," Bytes"
print "IO speed in b/s:", ("{:,}".format(TotalFileSize/(TotalTimeEnd - TotalTimeStart)

))," Bytes"
’’’

Closes the cnx3 connection to msc-->hashdatabase Read filedata

’’’
cursor3.close()
cnx3.commit()
cnx3.close()
’’’

Closes the cnx2 connection to msc-->hashdatabase Write filedata

’’’
cursor2.close()
cnx2.commit()
cnx2.close()
return True

###
The dbWriteRecord_Filename function do the following:
- Receives the cursor object and the values to store in two database tables
- The FileID and FilePathName , FileType and FileRemnant is written to the msc.filenames
#
###
def dbWriteRecord_Filename(cursor, dbRecord):

dbAddFilename = ("INSERT INTO filenames"+str(InitialBlockSize)+" "
"(FileNum, Filename, Filetype, FileRemnant)"
"VALUES (%s, %s, %s, %s)"

)
dataAddFilename =(dbRecord[0],

dbRecord[1],
dbRecord[2],
dbRecord[3]
)

cursor.execute(dbAddFilename, dataAddFilename)

return True

###
The dbWriteRecord_Blockhash function do the following:
- Receives the cursor object and the values to store in two database tables
- The FileID and FilePathName , FileType and FileRemnant is written to the msc.filenames
- The FileID, sha256hash, blocknum, Entropy is written to the msc.blockhash
#
###
def dbWriteRecord_Blockhash(cursor, dbRecord):

dbAddBlockhash = ("INSERT INTO blockhash"+str(InitialBlockSize)+" "
"(FileNum, SHA256, BlockNum, Entropy)"
"VALUES (%s, %s, %s, %s)"

)
dataAddBlockhash =(dbRecord[0],

dbRecord[1],
dbRecord[2],
dbRecord[3]

122 of 140 August 1, 2016

Blockhashing as a forensic method

)
cursor.execute(dbAddBlockhash, dataAddBlockhash)
return True

def dbCreateTables(cursor):
’’’

Define the tables in a dictionary of table defs

’’’
TABLES={}

TBL_Filenames="filenames"+str(InitialBlockSize)
TABLES[TBL_Filenames] = (

"CREATE TABLE "+TBL_Filenames+"("
" FileNum int(11) NOT NULL,"
" FileRemnant boolean default 0,"
" PRIMARY KEY (FileNum)"
") ENGINE=MYISAM")

TBL_Blockhash="blockhash"+str(InitialBlockSize)
TABLES[TBL_Blockhash] = (

"CREATE TABLE "+TBL_Blockhash+" ("
" id bigint(24) NOT NULL AUTO_INCREMENT,"
" FileNum int(11) NOT NULL,"
" SHA256 varchar(64) NOT NULL,"
" BlockNum int(11) NOT NULL,"
" Entropy double NOT NULL,"
#" INDEX Hash USING BTREE (SHA256(8)), "
" PRIMARY KEY (id)"
") ENGINE=MYISAM")

’’’

Iter trough the dictionary and execute the creation
of tables trough the cursor object

’’’
for name, ddl in TABLES.iteritems():

try:
print(’Creating table {}: ’.format(name))
cursor.execute(ddl)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:

print("The table already exists.")
else:

print(err.msg)
else:

print("OK")
return True

’’’

Use the Oracle mySQL plugin to handle mySQL databases
Open te database msc

’’’
def main():

Make connection if decided to dump data directly to the MySQL database.
Check the global varible in the beginning of the script
Preferable, dump the data to textfile, later import to MySQL with
LOAD DATA INFILE ...
#
if PrintToDB:

Make connection to database
try:

cnx=DatabaseConnection()
cnx =mysql.connector.connect(user=’root’, host=’localhost’,
password=’root’, database=’msc_pictures’)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:

print("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:

print("Database does not exists")
else:

print(err)

123 of 140 August 1, 2016

Blockhashing as a forensic method

else:
print("Connected to the database successfully, connection \

used for Blockhash and filenames !")

cursor=cnx.cursor()
dbCreateTables(cursor)
’’’

Starts the following:
Blockhshing(cursor) # The blockhashing w/Entropy

’’’
BlockHashingResult = BlockHashing(cnx, cursor)
cursor.close()
cnx.commit()
cnx.close()

else:
Prepare to not dump to database but to textfile
BlockHashingResult = BlockHashing(False, False)

return BlockHashingResult

def DatabaseConnection():
return mysql.connector.connect(user=’root’, password=’root’, \

host=’localhost’, database=’msc_pictures’)

if __name__ == ’__main__’:
main()

124 of 140 August 1, 2016

Blockhashing as a forensic method

A.1.3 Python script to blockhash the case

Code A.3: BlockHashingCase 0.0.1.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Dropbox/PHS/UCD/UCD-2014/Pythoncode/BlockHashingCase_0.0.1.py
Author: Kurt H Hansen
Created: 13.02.2015
Modified:
Purpose: MSc project. Create a database of blockhashes ripped from case file 8916796
Version: 0.0.1
#
#
import sys, os, math, struct, hashlib, time
import entropy # https://pypi.python.org/pypi/entropy/0.9

InitialBlockSize = 512
HashType="SHA256"
PrintToTXTDelimiter=’,’

The file were to hash from
FilesToHashPath = r’/Volumes/msc_khh/891679616796_2013_1732_A5.dd’

The file path+name and MD5 is dumped to this file if PrintToTXT = True
FileBlockhashToDumpTSV = "/Volumes/LaCie/msc_case_dbTXT/Blockhash" + str(InitialBlockSize)+

".txt"

###
The BlockHashing function do the following:
- Divide the file into blocks os size = InitialBlockSize
- Calculates the SHA256 of the block
- Calculates the entropy of the block
- Ommit the last block of a fileif size < InitialBlockSize
#
#
###
def main():

TotalTimeStart=time.time() # Timer, Total
FileRemnantsExists = False

DumpFile=open(FileBlockhashToDumpTSV, "w") # The file where to dump Block Hashes

’’’

Open the selected file. Read the content block by block

’’’
f1=open(FilesToHashPath,"rb") # Open the file, read only,

binar
filelength=os.path.getsize(FilesToHashPath) # Determine the file size
TotalBlocks=int(filelength/InitialBlockSize)
blocknum=0
for i in range(0, filelength,InitialBlockSize):

block=f1.read(InitialBlockSize)
if len(block) < InitialBlockSize: # If the block size < 512 bytes, ommit it.

FileRemnantsExists = True # Indicates if True the file has a chunk at
the

end not processed because <
InitialBlockSize

else:
Calculate the SHA256 of the block
sha256hash=hashlib.sha256(block).hexdigest()
Calculates the entropy of the block Entropy = 0-1
Entropy = entropy.shannon_entropy(block)
DumpFile.write(sha256hash+PrintToTXTDelimiter + str(blocknum) + \

PrintToTXTDelimiter + str(Entropy) + os.linesep)
FileTimeEnd = time.time()
blocknum +=1
if blocknum % 100000 == 0:

print "Blocks processed so far: ", (’{:,}’).format(blocknum)

’’’

The Blockhashing ends here per file

125 of 140 August 1, 2016

Blockhashing as a forensic method

’’’
DumpFile.close()
f1.close()
TotalTimeEnd=time.time()
print "Total processing time=", TotalTimeEnd - TotalTimeStart, " Seconds"
print "Total bytes processed:", ("{:,}".format(filelength))," Bytes"
print "IO speed in b/s:", ("{:,}".format(TotalFileSize/(TotalTimeEnd - TotalTimeStart)

))," Bytes"
print "Last block incomplete: ",FileRemnantsExists
return True

if __name__ == ’__main__’:
main()

126 of 140 August 1, 2016

Blockhashing as a forensic method

A.1.4 Python script to remove duplicate files in video database

Code A.4: Duplicates Remove 0.0.2.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Dropbox/PHS/UCD/UCD-2014/Pythoncode/Duplicates_Remove_0.0.1.py
Author: Kurt H Hansen
Created: 31.01.15
Modified: 09.02.15
Purpose: Reads data from Msc.Hashdatabase
Pick unique records based on MD5. Remove all duplicate file both
in database and the actual file
If by example there is 4 files with same MD5, 3 is deleted
#
By setting the variable createBash=True, the duplicate files is not
directly erased but the rm <<pat/file>> per file is put in the
Bash file: EraseDuplicateFiles.sh
Version: 0.0.2
Depends: Running the following script prior to this to create the database of MD5 hashes

of files:
/Users/Datakrim/Dropbox/PHS/UCD/UCD-2014/Pythoncode/Filehashing_0.0.2.py
Changes: 0.0.2 All references to database and tables are now in lowercase letters
Cleaned up in the script

import sys, os, dircache
import encodings
import unicodedata
reload(sys)
sys.setdefaultencoding("utf8")

import mysql.connector

Set this value to True if no direct erase of duplicate
files but store the erase command in a bash script
createBash=True

db=mysql.connector.connect(host="localhost", user="root", db="msc")
cur=db.cursor()

print "Executes statement on Hashdatabase to pick duplicate \
records based on hash. This could take time"

#
The following SQL-query picks records with equal MD5.
All records with more than 2 MD5 with same value
#
cur.execute("select id,Filename,hashdatabase.MD5 from hashdatabase inner join \

(select MD5 from hashdatabase group by MD5 having count(id) > 1) \
dup on hashdatabase.MD5 = dup.MD5")

print "The SQL statement on database Hashdatabase is finished ..."
print "Finding are evaluated ..."

tmpMD5=’’
if createBash:

a=open("EraseDuplicateFiles.sh","w") # The bash script file open for write
a.write("#!/bin/bash" + os.linesep) # Initialize the bash script shebang

for row in cur.fetchall() : # Traverse trough the whole dataset
f_MD5=row[2]
if f_MD5 == tmpMD5:

f_name=row[1]
f_status=os.path.isfile(f_name) # Check if file defined in database exists
f_id=row[0]
if f_status:

Routine for erasing the physical file
as we now have identified the file as
a copy and the file actually exists on the disk
#
1. Erase the file:
#
try:

if createBash:
Write to the EraseDuplicateFiles.sh bash file
a.write("rm " + ’"’ + f_name + ’"’ + os.linesep)

else:
Erases the file given from record in the Hashdatabase
os.remove(f_name)

127 of 140 August 1, 2016

Blockhashing as a forensic method

if failed, report it back to the user
except OSError, e:

print ("Error: %s - %s." % (e.filename,e.strerror))
print "We have erased: ", f_name, " Status=",f_status

else:
print "The file: ", f_name, " does not exist"

Next, the duplicate record in the Hasdatabase will be removed
2. Erase the record
The record(s) will be erased even if the corresponding file does not exist
#
sql_statmt=("DELETE FROM %s WHERE id = %s") %(’hashdatabase’, f_id)
#print sql_statmt
cur.execute(sql_statmt) # Delete the requested record in Hashdatabase
db.commit()

tmpMD5 = f_MD5
a.close()
db.close()

128 of 140 August 1, 2016

Blockhashing as a forensic method

A.1.5 Python script to calculate average color of the jpg pictures

Code A.5: Pictures Pixelcalc 0.0.4.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Qsync/PHS/UCD/UCD-2014/Pythoncode/Pictures_Pixelcalc_0.0.4.

py
Author: Kurt H Hansen
Created: 19.02.2015
Modified: 16.01.2016
Purpose: MSc to calculate the color average in 40500 pictures
Version: 0.0.4
Changes: Addes sys.argv with 3 arguments.
Replaced the picture calculation engine
Example python Pictures_Pixelcalc_0.0.4.py ./Bilder/ ./Pixelcalc.txt jpg
Links: http://blog.iconfinder.com/detecting-duplicate-images-using-python/
Credit http://pythonicprose.blogspot.no/2009/09/python-find-average-rgb-color-for-

image.html
Steve ??
Resource http://rapidtables.com/convert/color/index.htm

import sys, os, math, datetime, time
from PIL import Image

#
Checking the startup of the script that requires two arguments, separated with <space>
#
def usage():

print len(sys.argv)
print "The script was started wtih wrong options"
print "The script require two arguments !"
print "Use the following syntax: "
print sys.argv[0], " <Full path to pictures> <full path and filename \

to TSV file> <file extension>"
sys.exit()

class PixelCounter(object):
’’’ loop through each pixel and average rgb ’’’
def __init__(self, imageName):

self.pic = Image.open(imageName)
load image data
self.imgData = self.pic.load()

def averagePixels(self):
r, g, b = 0, 0, 0
count = 0
for x in xrange(self.pic.size[0]):

for y in xrange(self.pic.size[1]):
tempr,tempg,tempb = self.imgData[x,y]
r += tempr
g += tempg
b += tempb
count += 1

calculate averages
PixelAverage=(r/count * 256**2)+(g/count * 256**1)+(b/count * 256**0)

return (r/count), (g/count), (b/count), count,PixelAverage

###
The color calculation function do the following:
- Traverse a given folder and its subfolder
- Clculate the average color (rgb pairs, decimal and Hex)
- Export the calculations to a TSV file
#
###
def MainPictureCalculation(PathToPictures, FileToDumpTSV, FileTypesToEvaluate):

TotalTimeStart=time.time()
Opens the output TSV file for write
OutputTxtCSV=open(FileToDumpTSV, "w")
Set the searchdir static
for path, subdirs, files in os.walk(PathToPictures):

for filename in files:
t1=time.time()
Make a lower-case instance of the filename when in next line

129 of 140 August 1, 2016

Blockhashing as a forensic method

check for valid suffixes in lower-case
filenameTOlower=filename.lower()
Check if the file endings are according to the global
variable set of extensions
if filenameTOlower.endswith(FileTypesToEvaluate):

FileTimeStart=time.time()
Concatenate File path + name
FilePathName = os.path.join(path, filename)

pc = PixelCounter(FilePathName)
#print "(red, green, blue, total_pixel_count, average color decimal)"
PictureArray= pc.averagePixels()

ColorHex=hex(PictureArray[4]).rstrip("L").lstrip("0x") or "0"
ColorR = PictureArray[0]
ColorG = PictureArray[1]
ColorB = PictureArray[2]
ColorRGB=(ColorR,ColorG,ColorB)
OutputTxtCSV.write(os.path.basename(FilePathName)+"\t"+ \

str(PictureArray[4]) +"\t"+ \
ColorHex + "\t"+ str(ColorRGB) + os.linesep)

t2 = time.time()
print "Finished in", round(t2-t1,2), "sec, Size: ", \

("{:,}".format(os.path.getsize(FilePathName))), \
" File:", os.path.basename(FilePathName)

OutputTxtCSV.close()
TotalTimeEnd=time.time()
print "Total processing time=", TotalTimeEnd - TotalTimeStart, " Seconds"
return True

---------- Main part of code. Execution starts here ----------
if __name__ == ’__main__’:

if (len(sys.argv) < 4): # Checks that the full path is given and the log-file
usage()

print sys.argv
MainPictureCalculation(sys.argv[1], sys.argv[2], sys.argv[3])
print "Finished ..."

130 of 140 August 1, 2016

Blockhashing as a forensic method

A.1.6 Python script to convert JPG pictures to BMP-2

Code A.6: ConvertJPGtoBMP2.py

#!/usr/bin/env python

From: ActiveState
http://code.activestate.com/recipes/180801-convert-image-format/
"""Program for converting image files from one format
to another. Will convert one file at a time or all
files (of a selected format) in a directory at once.
Converted files have same basename as original files.

Uses workaround: askdirectory() does not allow choosing
a new dir, so asksaveasfilename() is used instead, and
the filename is discarded, keeping just the directory.
"""
import os, os.path, string, sys
from Tkinter import *
from tkFileDialog import *
from PIL import Image

openfile = ’’ # full pathname: dir(abs) + root + ext
indir = ’’
outdir = ’’
def getinfilename():

global openfile, indir
ftypes=((’Gif Images’, ’*.gif’),

(’Jpeg Images’, ’*.jpg’),
(’Png Images’, ’*.png’),
(’Tiff Images’, ’*.tif’),
(’Bitmap Images’, ’*.bmp’),
("All files", "*"))

if indir:
openfile = askopenfilename(initialdir=indir,

filetypes=ftypes)
else:

openfile = askopenfilename(filetypes=ftypes)
if openfile:

indir = os.path.dirname(openfile)

def getoutdirname():
global indir, outdir
if openfile:

indir = os.path.dirname(openfile)
outfile = asksaveasfilename(initialdir=indir,

initialfile=’foo’)
else:

outfile = asksaveasfilename(initialfile=’foo’)
outdir = os.path.dirname(outfile)

def save(infile, outfile):
if infile != outfile:

try:
Image.open(infile).save(outfile)

except IOError:
print "Cannot convert", infile

def convert():
newext = frmt.get()
path, file = os.path.split(openfile)
base, ext = os.path.splitext(file)
if var.get():

ls = os.listdir(indir)
filelist = []
for f in ls:

if os.path.splitext(f)[1] == ext:
filelist.append(f)

else:
filelist = [file]

for f in filelist:
infile = os.path.join(indir, f)
ofile = os.path.join(outdir, f)
outfile = os.path.splitext(ofile)[0] + newext
save(infile, outfile)

win = Toplevel(root)

131 of 140 August 1, 2016

Blockhashing as a forensic method

Button(win, text=’Done’, command=win.destroy).pack()

Divide GUI into 3 frames: top, mid, bot
root = Tk()
topframe = Frame(root,

borderwidth=2,
relief=GROOVE)

topframe.pack(padx=2, pady=2)

midframe = Frame(root,
borderwidth=2,
relief=GROOVE)

midframe.pack(padx=2, pady=2)

botframe = Frame(root)
botframe.pack()

Button(topframe,
text=’Select image to convert’,
command=getinfilename).pack(side=TOP, pady=4)

multitext = """Convert all image files
(of this format) in this folder?"""
var = IntVar()
chk = Checkbutton(topframe,

text=multitext,
variable=var).pack(pady=2)

Button(topframe,
text=’Select save location’,
command=getoutdirname).pack(side=BOTTOM, pady=4)

Label(midframe, text="New Format:").pack(side=LEFT)
frmt = StringVar()
formats = [’.bmp’, ’.gif’, ’.jpg’, ’.png’, ’.tif’]
for item in formats:

Radiobutton(midframe,
text=item,
variable=frmt,
value=item).pack(anchor=NW)

Button(botframe, text=’Convert’, command=convert).pack(side=LEFT,
padx=5,
pady=5)

Button(botframe, text=’Quit’, command=root.quit).pack(side=RIGHT,
padx=5,
pady=5)

root.title(’Image Converter’)
root.mainloop()

132 of 140 August 1, 2016

Blockhashing as a forensic method

A.1.7 Python script to blockhash the BMP-2 files

Code A.7: BlockhashPicturesBMP 0.0.1.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Qsync/PHS/UCD/UCD-2014/
Pythoncode/BlockhashPicturesBMP_0.0.1.py
Author: Kurt H Hansen
Created: 02.02.2016
Modified:
Purpose: MSc to blockhash BMP2 files converted from JPG
Version: 0.0.1
Changes:
Example

import sys, os, math, datetime, time
from PIL import Image
import entropy # https://pypi.python.org/pypi/entropy/0.9
import hashlib

InitialBlockSize = 512
UpdateHashdatabase=False
HashType="SHA256"
Give all in lower-case. The search convert the filename to lc.
FileTypesToEvaluate = (’bmp’)
TotalFileSize = 0
PrintToTXTDelimiter=’,’

The path were to hash from
FilesToHashPath = r’/Volumes/LaCie/msc_pictures_raw/’
The file path+name and MD5 is dumped to this file if PrintToTXT = True
FileBlockhashToDumpCSV = "/Volumes/LaCie/msc_pictures_raw_txt/Blockhash" + \

str(InitialBlockSize)+".txt"

###
The color calculation function do the following:
- Traverse a given folder and its subfolder
- Create blockhash SHA256 and entropy of each block
- Export the calculations to a CSV file
prepared for import into MySQL database
#
###

TotalTimeStart=time.time()
OutputTxtCSV=open(FileBlockhashToDumpCSV, "a") # Opens the output CSV file for

write
for path, subdirs, files in os.walk(FilesToHashPath): # Set the searchdir static

for filename in files:
t1=time.time()
Make a lower-case instance of the filename when in next
line check for valid suffixes in lower-case
filenameTOlower=filename.lower()
Check if the file endings are according to the
global variable set of extensions
if filenameTOlower.endswith(FileTypesToEvaluate) and int(filenameTOlower[3:-4]) >

0:
FileTimeStart=time.time()
filelength=os.path.getsize(FilesToHashPath+filename)

FileSkipBytes=54
f1=open(FilesToHashPath+filename,"rb").read()
blocknum=0
#xxx=open(FilesToHashPath+filename+".DD","wb")
#print FilesToHashPath+filename+".DD"
for i in range(FileSkipBytes, filelength,InitialBlockSize):

block=f1[i:i+InitialBlockSize]
#xxx.write(block)
If the block size < 512 bytes, ommit it.
if len(block) < InitialBlockSize:

Indicates if True the file has a chunk at the
end not processed because < InitialBlockSize
FileRemnantsExists = True

else:
Calculate the SHA256 of the block

133 of 140 August 1, 2016

Blockhashing as a forensic method

sha256hash=hashlib.sha256(block).hexdigest()
Calculates the entropy of the block Entropy = 0-1
Entropy = entropy.shannon_entropy(block)
OutputTxtCSV.write(str(filename) + PrintToTXTDelimiter + \

sha256hash+PrintToTXTDelimiter + str(blocknum) + \
PrintToTXTDelimiter + str(Entropy) + os.linesep)

FileTimeEnd = time.time()
blocknum +=1

#xxx.close()
TotalFileSize += filelength
blocknum=0 # File is processed, set block to 0
FileRemnantsExists=False # Resets the indicator of smal ending of file

t2 = time.time()
print round(t2-t1,2), filename

OutputTxtCSV.close()
TotalTimeEnd=time.time()
print "Total processing time=", TotalTimeEnd - TotalTimeStart, " Seconds"

print "Finished ..."

A.1.8 Python script to create block maps of hits on references to unallocated

Code A.8: CaseData Pictogram 0.0.1.py

#!/usr/bin/env python
-*- coding: utf8 -*-
Script: /Users/Datakrim/Qsync/PHS/UCD/UCD-2014/Pythoncode/
CaseData_Pictogram_0.0.1.py
Author: Kurt H Hansen
Created: 2016-02-08
Modified: 2016-02-09
Purpose: MSc project. Produces a pictogram of blocks in a reference
file with hit in unallocated clusters
Version: 0.0.1

import sys, os, math
import encodings
import unicodedata
reload(sys)
sys.setdefaultencoding("utf8")

import mysql.connector # The MySQL engine
from mysql.connector import errorcode

from PIL import Image, ImageDraw

ColorRed=0
FileIdNr = (24,20,13,9,1)
BlockSize=512

def MainProcessing(cnx,cnx2, FileIdentification):
cursor=cnx.cursor()
SQLselect="SELECT * FROM msc_case.caselookup" + str(BlockSize) +\

" inner join msc_case.reference_hashdatabase " +\
" on msc_case.caselookup" + str(BlockSize) +".FileNum = msc_case.

reference_hashdatabase.id" +\
" and msc_case.reference_hashdatabase.id = " + str(FileIdentification)

cursor.execute(SQLselect)

Retrieves the first file from msc-->hashdatabase
row = cursor.fetchone()
ReferenceBlocs = 0
EntropyAmountRYB=[0,0,0]
if row is not None:

FileSize= row[8]
FileBlocks=int(FileSize/BlockSize)
Set picture width to at least 600 pixels
CreatedPictureX=max(int(math.sqrt(FileBlocks))+1,300)
Extra space for text in bottom of picture
CreatedPictureY=int(FileBlocks/CreatedPictureX)+1 + 40

print FileSize,FileBlocks, CreatedPictureX, \
CreatedPictureY, CreatedPictureX*CreatedPictureY

134 of 140 August 1, 2016

Blockhashing as a forensic method

SQLselect="SELECT * FROM msc_case.caselookup" + str(BlockSize) +\
" where msc_case.caselookup" + str(BlockSize) +".FileNum = " + str(

FileIdentification) +\
" order by msc_case.caselookup" + str(BlockSize) +".ref_block"

cursor2=cnx2.cursor()
cursor2.execute(SQLselect)

Initialize the picture to generate

size of the image to create
PictureSize = (CreatedPictureX,CreatedPictureY)
im = Image.new(’RGB’, PictureSize, (192,192,192)) # create the image
pixels = im.load() # create the pixel map

Retrieves the first file from msc-->hashdatabase
row = cursor2.fetchone()
while row is not None: # Continue to EOF

ReferenceBlocs += 1
PixelY=int(row[2]/CreatedPictureX)
PixelX=row[2] % CreatedPictureX
#print row[2]
if row[3] < 0.5:

Entropy < 0.5 marked in black
pixels[PixelX,PixelY] = (0, 0, 0)
EntropyAmountRYB[2] += 1

elif row[3] > 0.9:
Entropy > 0.9 marked in Red
pixels[PixelX,PixelY] = (255, 0, 0)
EntropyAmountRYB[0] += 1

else:
Entropy 0.5 to 0.9 marked in Yellow
pixels[PixelX,PixelY] = (255, 255, 0)
EntropyAmountRYB[1] += 1

row = cursor2.fetchone()
Create a drawing object for the picture to put some
text at the bottom
draw = ImageDraw.Draw(im)
TexColor = (0,0,0) # color of our text in black
text_pos1 = (5,CreatedPictureY - 36) # top-left position of our text
text_pos2 = (5,CreatedPictureY - 24) # top-left position of our text
text_pos3 = (5,CreatedPictureY - 12) # Bottom text
HitPercent=round((ReferenceBlocs * 100)/FileBlocks,2)
text1 = "B-size:"+str(BlockSize)+" Fileid# " + str(FileIdentification) +\

" Hits="+str(ReferenceBlocs)+"("+str(HitPercent)+"%)"
text2="Red=E > 0.9, Yellow=E 0.5 - 0.9 Black=E < 0.5" # text in image
text3="Red =" + str(EntropyAmountRYB[0])+"("+\

str(round((EntropyAmountRYB[0]*100)/ReferenceBlocs,2)) + "%)"+\
" Yellow=" + str(EntropyAmountRYB[1])+"("+\
str(round((EntropyAmountRYB[1]*100)/ReferenceBlocs,2)) + "%)"+\
" Black=" + str(EntropyAmountRYB[2])+"(" + \
str(round((EntropyAmountRYB[2]*100)/ReferenceBlocs,2))+"%)"

Now, we’ll do the drawing:
draw.text(text_pos1, text1, fill=TexColor)
draw.text(text_pos2, text2, fill=TexColor)
draw.text(text_pos3, text3, fill=TexColor)
draw.line([(0,CreatedPictureY - 40),(CreatedPictureX,CreatedPictureY - 40)], fill

=(0,0,0), width=2)
Show the picture on screen
im.show()
Save the picture to disk in .EPS file format
im.save("./Pictograms/CaseData_Process_Pictogram"+ str(BlockSize)+"_"+str(

FileIdentification) + ".eps")
else:

print "Database did not contain anything about that file ID"
return True

############## Main ###################################
#
Use the Oracle mySQL plugin to handle mySQL databases
Open te database MSc
#
###
if __name__ == "__main__":

for FileIdNumber in FileIdNr:
try:

135 of 140 August 1, 2016

Blockhashing as a forensic method

cnx =mysql.connector.connect(user=’root’, host=’localhost’, password=’root’,
database=’msc_case’)

cnx2 =mysql.connector.connect(user=’root’, host=’localhost’, password=’root’,
database=’msc_case’)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:

print("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:

print("Database does not exists")
else:

print(err)
else:

print("Connected to the database successfully !")
MainProcessing(cnx,cnx2, FileIdNumber)
cnx.close()
cnx2.close()

print "Finished "

A.1.9 Python script to create block maps of blocks located in unallocated
area of pre-existing files

Code A.9: CaseData Pictogram Unallocated 0.0.1.py

#!/usr/bin/env python
-*- coding: utf8 -*-
Script: /Users/Datakrim/Qsync/PHS/UCD/UCD-2014/Pythoncode/
CaseData_Pictogram_Unallocated_0.0.1.py
Author: Kurt H Hansen
Created: 2016-02-09
Modified:
Purpose: MSc project. Produces a pictogram of blocks in unallocated
area where a certain reference file has hits on same SHA256
Version: 0.0.1

import sys, os, math
import encodings
import unicodedata
reload(sys)
sys.setdefaultencoding("utf8")

import mysql.connector # The MySQL engine
from mysql.connector import errorcode

from PIL import Image, ImageDraw

ColorRed=0
FileIdNr = (24,20,13,9,1)
BlockSize=4096
BlockResolution=100

def MainProcessing(cnx,cnx2,FileIdentification):

row=[]
ReferenceBlocs = 0
if row is not None:

SQLselect="SELECT * FROM msc_case.caselookup" + str(BlockSize) +\
" where msc_case.caselookup" + str(BlockSize) +".FileNum = " + str(

FileIdentification) +\
" order by msc_case.caselookup" + str(BlockSize) +".unallocated_block

DESC limit 1"
cursor2=cnx2.cursor()
cursor2.execute(SQLselect)
row = cursor2.fetchone()
MaxBlockNum =int(row[4]/BlockResolution)

SQLselect="SELECT * FROM msc_case.caselookup" + str(BlockSize) +\
" where msc_case.caselookup" + str(BlockSize) +".FileNum = " + str(

FileIdentification) +\
" order by msc_case.caselookup" + str(BlockSize) +".unallocated_block"

cursor2=cnx2.cursor()
cursor2.execute(SQLselect)

136 of 140 August 1, 2016

Blockhashing as a forensic method

Retrieves the first file from msc-->hashdatabase
row = cursor2.fetchone()
MinBlockNum = int(row[4]/BlockResolution)
BlockRange=MaxBlockNum-MinBlockNum

Set picture width to at least 600 pixels
CreatedPictureX=max(int(math.sqrt(BlockRange))+1,600)
Extra space for text in bottom of picture
CreatedPictureY=int(BlockRange/CreatedPictureX)+1 + 30

print MinBlockNum, MaxBlockNum, CreatedPictureX, CreatedPictureY
#

Initialize the picture to generate

size of the image to create
PictureSize = (CreatedPictureX+2,CreatedPictureY)
im = Image.new(’RGB’, PictureSize, (255,255,255)) # create the image
pixels = im.load() # create the pixel map

while row is not None: # Continue to EOF
ReferenceBlocs += 1
row4_value=int(row[4]/BlockResolution)
PixelY=int((row4_value-MinBlockNum)/CreatedPictureX) + 1
PixelX=((row4_value-MinBlockNum) % CreatedPictureX)+ 1
pixels[PixelX,PixelY] = (255, 0, 0)
row = cursor2.fetchone()

Create a drawing object for the picture to put some
text at the bottom
draw = ImageDraw.Draw(im)
TexColor = (0,0,0) # color of our text in black
text_pos1 = (5,CreatedPictureY - 24) # top-left position of our text
text_pos2 = (5,CreatedPictureY - 12) # top-left position of our text

text1 = "B-size:"+str(BlockSize)+" Fileid# " + str(FileIdentification) +\
" Hits="+str(ReferenceBlocs)

text2="Red=Block ref Res: "+str(BlockResolution)+" blocks "+\
"Range u.c: " + str(MinBlockNum*BlockResolution)+"-"+str(MaxBlockNum*

BlockResolution) +\
" Range u.b.512: " + str(MinBlockNum*BlockResolution*int(BlockSize/512))+"-

"+str(MaxBlockNum*BlockResolution*int(BlockSize/512)) # text in image
Now, we’ll do the drawing:
draw.text(text_pos1, text1, fill=TexColor)
draw.text(text_pos2, text2, fill=TexColor)
Graphic_DrawLines(draw, CreatedPictureX, CreatedPictureY)

im.show()
Save the picture to disk in .EPS file format
im.save("./Pictograms/CaseData_Process_Pictogram_Unallocated"+ str(BlockSize)+"_"+

str(FileIdentification) + ".eps")
else:

print "Database did not contain anything about that file ID"
return True

def Graphic_DrawLines(draw, maxX,MaxY):
draw.line([(0,MaxY - 27),(maxX+1,MaxY - 27)], fill=(0,0,0), width=1)
draw.line([(0,0), (maxX+1,0)], fill="black", width=1)
draw.line([(maxX+1,0), (maxX+1,MaxY-1)], fill="black", width=1)
draw.line([(0,MaxY-1), (maxX+1,MaxY-1)], fill="black", width=1)
draw.line([(0,0), (0,MaxY-1)], fill="black")

############## Main ###################################
#
Use the Oracle mySQL plugin to handle mySQL databases
Open te database MSc
#
###
if __name__ == "__main__":

for FileIdNumber in FileIdNr:
try:

cnx =mysql.connector.connect(user=’root’, host=’localhost’, password=’root’,
database=’msc_case’)

137 of 140 August 1, 2016

Blockhashing as a forensic method

cnx2 =mysql.connector.connect(user=’root’, host=’localhost’, password=’root’,
database=’msc_case’)

except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:

print("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:

print("Database does not exists")
else:

print(err)
else:

print("Connected to the database successfully !")
MainProcessing(cnx,cnx2,FileIdNumber)
cnx.close()
cnx2.close()

print "Finished "

A.1.10 Python script to calculate average entropy on file types

Code A.10: Entropy Calculate Files 0.0.1.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script: /Users/Datakrim/Dropbox/PHS/UCD/UCD-2014/Pythoncode/
Entropy_Calculate_Files_0.0.1.py
Author: Kurt H Hansen
Created: 2016-02-16
Modified:
Purpose: MSc project
Find average entropy on a type of file
(like pdf files or docx files)
Version: 0.0.1

import sys, os, hashlib, datetime,entropy,time

reload(sys)
sys.setdefaultencoding("latin-1")
t_start=0
count_Entropy=0
count_Files=0
t1=str(datetime.datetime.now())
with open("/Volumes/ExFAT_1TB/Entropy_DOCX.txt", "w") as outputFile:

for path, subdirs, files in os.walk(r’/Volumes/ExFAT_1TB/DOCX/’):
for filename in files:

f = os.path.join(path, filename)
try:

f_size= os.path.getsize(f)
except:

f_size=0
if f_size > 0 and filename[0] != ’.’ and filename[0] != ’_’:

try:
t_start=time.time()

FileContent=open(f).read()
Entropy = entropy.shannon_entropy(FileContent)

#print f, Entropy

outputFile.write(str(f)+";"+str(f_size)+";"+str(Entropy) + os.linesep)
t_end=time.time()
print str(round(t_end-t_start,4)), Entropy, str(f)
count_Files +=1
count_Entropy += Entropy

except:
pass
#print "Error in reading file:", f

print "Average entropy on " + str(count_Files)+" files is: "+str(count_Entropy/count_Files)

A.1.11 Python script to extract unallocated blocks from NTFS file system

Code A.11: NTFS ReadUnallocatedFromBitmap 0.0.1.py

#!/usr/bin/env python
-*- coding: latin-1 -*-
Script:

138 of 140 August 1, 2016

Blockhashing as a forensic method

Author: Kurt H Hansen
Created:
Modified:
Purpose:
Version: 0.0.1

import sys, os
import struct
import encodings
import unicodedata
reload(sys)
sys.setdefaultencoding("latin-1")
global clusterSize
global f_bitmap, f_volume, f_unallocated
clusterSize= 4096

def BitmapCheckStatus(status,bitmapOffset):
offsetInVolume=clusterSize * bitmapOffset
for bit in range(0,8):

if status & (2 ** bit) <= 0:
f_volume.seek(((bitmapOffset * 8)+bit) * clusterSize,0)

#print bitmapOffset, clusterSize, bit, ((bitmapOffset * 8)+bit) * clusterSize

Block=f_volume.read(clusterSize)
f_unallocated.write(Block)

return True

f_bitmap=open(’/Volumes/ExFAT_1TB/msc_case_image/Bitmap’, ’rb’)
f_volume=open(’/Volumes/ExFAT_1TB/msc_case_image/8916796-2013_1732_A5.dd’, ’rb’)
f_unallocated=open(’/Volumes/ExFAT_1TB/msc_case_image/Unallocated1’, ’wb’)

bitmapSize=os.path.getsize(’/Volumes/ExFAT_1TB/msc_case_image/Bitmap’)

for i in range(0, bitmapSize):
f_bitmap.seek(i)
x=f_bitmap.read(1)

bitmapStatus = struct.unpack(’<B’, x)

BitmapCheckStatus(bitmapStatus[0],i)

f_bitmap.close()
f_volume.close()
f_unallocated.close()
print "Finished ..."

139 of 140 August 1, 2016

Blockhashing as a forensic method

A.2 SQL Queries

Code A.12: Inner join of all records in case vs references

1 LOAD DATA INFILE ’path/filename.csv’ INTO TABLE Blockhash512 FIELDS TERMINATED BY ’\t’
LINES TERMINATED BY ’\n’ IGNORE 0 ROWS (FileNum,SHA256,BlockNum,Entropy);

Code A.13: SQL command to detect collision in tables

1 select SHA256,count(*) as count from blockhashNNNN group by sha256 having count(*) > 1;

Code A.14: SQL command to detect mutual blocks in reference data and unallocated

1 use msc_case;
2 select reference_blockhash4096.FileNum, reference_blockhash4096.SHA256,

reference_blockhash4096.BlockNum as Reference_Blocknum, reference_blockhash4096.Entropy
, blockhash_unallocated4096.BlockNum as Unallocatd_Blocknum from
blockhash_unallocated4096,reference_blockhash4096 where blockhash_unallocated4096.
SHA256 = reference_blockhash4096.SHA256 and reference_blockhash4096.FileNum > 0 and
reference_blockhash4096.Entropy > 0.01 order by reference_blockhash4096.FileNum,
reference_blockhash4096.BlockNum INTO OUTFILE ’r:\
LookupReferenceToBlockhash_size4096_FileID_ALL.csv’ FIELDS TERMINATED BY ’,’ LINES
TERMINATED BY ’\n’;

Code A.15: SQL command to detect collision in sub-query

1 use msc_case;
2 SELECT count(FileNum) as Records, FileNum FROM msc_case.caselookup512 group by FileNum

order by Records;

Code A.16: SQL command to perform Injection-Verification

1 SELECT reference_blockhash4096.FileNum AS "Reference file",
2 reference_blockhash4096.BlockNum AS "Reference block",
3 reference_blockhash4096.SHA256,
4 Blockhash_unallocated4096.BlockNum AS "Unallocated block"
5 FROM reference_blockhash4096
6 INNER JOIN Blockhash_unallocated4096
7 ON reference_blockhash4096.SHA256 = Blockhash_unallocated4096.SHA256
8 WHERE reference_blockhash4096.FileNum = 1
9 ORDER BY Blockhash_unallocated4096.BlockNum;

140 of 140 August 1, 2016

	I Introduction
	Introduction
	Motivation and Background

	Litterature Survey
	Forensic Methodology and Legal aspects
	Hash algorithms, Entropy and Block size
	Hash algorithms
	Entropy
	Block sizes

	block-hashing
	Sliding block-hashing
	Aligned block-hashing
	Data Reduction in large datasets

	Existing block-hashing tools
	Verification

	II Problem Statement and Methodologies
	Problem Statement
	Is block hashing a recommended, sustainable method to identify presence of the reference data to use as admissible evidence in court
	Define criteria to ensure blocks in reference and target data are the same
	Setting bias for amount of mutual data between reference and target data
	Optimal block size to use
	Other factors to approve or disapprove the method as robust enough
	Verifiable
	Is it feasible to combine the above criteria to ensure the technique produce admissible evidence

	Research Methodology
	Creating datasets
	Collision probability
	Entropy bias
	Optimal block size
	Determine bias for coinciding and coherency of blocks

	III Evaluation
	Experimental setup
	Hardware
	Software
	Challenges in hardware/software and datasets

	Experimental Sources
	Datasets
	The creation of the datasets
	Details about the datasets

	Description of Results
	Results from dataset 1, msc database
	Results from dataset 2, msc_pictures database
	Results from dataset 3, msc_case database
	Detecting hash collisions in unallocated blocks
	Detecting equal blocks in reference data and unallocated areas
	Detecting hash collision in blocks from unallocated areas
	Analysing hits between reference data and unallocated area
	Connection between common blocks in unallocated areas and reference files

	Results from dataset 4, misc datasets
	Database msc_veracrypt
	Database msc_text
	Entropy in different file types

	IV Discussion and Conclusion
	Discussion
	Optimal hash algorithm to identify coinciding blocks
	Optimal Block Size to qualify the method
	Entropy to qualify the method
	Continuous blocks to qualify the method
	False positives/hash collisions
	Other factors with influence of the method
	The combination of block-size, entropy and continuous blocks
	Criteria for documentation
	Verification of findings
	Other factors influencing the method

	Conclusion
	Is block hashing a recommended, sustainable method to identify presence of the reference data to use as admissible evidence in court
	Define criteria to ensure blocks in reference and target data are the same
	Setting bias for amount of mutual data between reference and target data
	Optimal block size to use
	Other factors to approve or disapprove the method as robust enough
	Verifiable
	Is it feasible to combine the above criteria to ensure the findings are admissible evidence ?

	Investigative skills
	Further work

	V Appendices
	Scripts
	Python Scripts
	Python script to create filehashes
	Python script to create blockhashes
	Python script to blockhash the case
	Python script to remove duplicate files in video database
	Python script to calculate average color of the jpg pictures
	Python script to convert JPG pictures to BMP-2
	Python script to blockhash the BMP-2 files
	Python script to create block maps of hits on references to unallocated
	Python script to create block maps of blocks located in unallocated area of pre-existing files
	Python script to calculate average entropy on file types
	Python script to extract unallocated blocks from NTFS file system

	SQL Queries

